摘要
Motivated by recent experiments, we investigate structural, electronic, and magnetic properties of tetragonal FeSe with Fe vacancies using the state-of-the-art first-principles method. We show that Fe vacancies tend to stay in the same one of the two sublattices and thus induce ferromagnetism in the ground-state phase. Our calculated net moment is in good agreement with the experimental data available. Therefore, the ferromagnetism observed in tetragonal FeSe thin films is explained. It could be made controllable soon for spintronic applications.
Motivated by recent experiments, we investigate structural, electronic, and magnetic properties of tetragonal FeSe with Fe vacancies using the state-of-the-art first-principles method. We show that Fe vacancies tend to stay in the same one of the two sublattices and thus induce ferromagnetism in the ground-state phase. Our calculated net moment is in good agreement with the experimental data available. Therefore, the ferromagnetism observed in tetragonal FeSe thin films is explained. It could be made controllable soon for spintronic applications.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 10874232, 10774180 and 60621091, the Knowledge Innovation Project of Chinese Academy,of Sciences under Grant No KJCX2.YW.W09-5, and the National Basic Research Program of China under Grant No 2005CB623602.