摘要
聚类和粒度具有天然的相通性,本文探讨了基于粒度聚类算法的一般框架,并基于该框架,研究了一种基于网格密度的文本聚类算法,最后以例证说明这一方法的可行性。
Clustering analysis and granular computing are consistent in nature. This paper discusses a generic framework of clustering based on granularity. Based on the framework, the paper proposes a text clustering algorithm named GCBGD(granularity clustering based on grid density). The experiment results show that the proposed method has high performance and is feasible.
出处
《合肥师范学院学报》
2009年第6期39-40,共2页
Journal of Hefei Normal University
基金
安徽高等学校省级自然科学研究项目(KJ2009B238Z)
关键词
聚类分析
粒度计算
网格密度
文本聚类
clustering analysis
granular computing
grid density
text clustering