期刊文献+

铝胁迫对不同耐铝性小麦基因型根尖抗氧化酶活性的影响 被引量:12

Effects of aluminum stress on antioxidant enzyme activity in root tips of wheat genotypes differing in aluminum tolerance
下载PDF
导出
摘要 以2个小麦基因型鉴-864(耐性)和扬麦5号(敏感)为材料,在水培条件下研究铝胁迫下根系伸长,根尖铝含量,根尖超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性,丙二醛(MDA)和根尖过氧化氢含量随着时间的变化.结果表明:在30μmol?L-1AlCl3胁迫下,随着铝处理时间的增加,小麦根系伸长受到显著抑制,且扬麦5号受抑制程度更为明显.根尖铝含量随着铝处理时间的增加而上升,且扬麦5号显著高于鉴-864.在铝胁迫下,2个小麦基因型根尖SOD、CAT和APX活性随着处理时间的延长而增加.在铝处理3h时,2个小麦基因型根尖酶活性无显著差异;铝处理6h后,扬麦5号根尖SOD活性显著高于鉴-864,而鉴-864根尖CAT和APX活性显著高于扬麦5号.2个小麦基因型根尖MDA含量随着铝处理时间的增加而升高,在铝处理3h时,2个小麦基因型无显著差异;铝处理6h后,扬麦5号显著高于鉴-864.H2O2含量随着铝处理时间的延长而上升,以敏感基因型积累较多.可见,与小麦耐性基因型相比,在铝胁迫下小麦敏感基因型根尖SOD活性较高而CAT、APX活性较低,从而引起H2O2过量积累而导致氧化胁迫,使细胞的脂质过氧化程度加剧,最终严重抑制根系伸长. The time-dependent effects of aluminum (Al) stress on root elongation, aluminum content, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), malondialdehyde (MDA) and H2O2 in the root tips of Al-resistant (Jian-864) and Al-sensitive (Yangmai-5) genotypes of wheat ( Triticum aestivum L. ) were investigated by using hydroponics. Root elongation of both genotypes was greatly inhibited with the increasing exposure time to 30μmol·L^-1 AlCl3, but more inhibition of root elongation was observed in Yangmai-5. Total Al content in root tips increased as time passed by, with total Al content significantly higher in Yangmai-5 than that in Jian-864. The SOD, CAT and APX activities in root tips of both lines increased with increasing exposure time to Al. There was no significant difference in the 3 enzyme activities of both genotypes at 3 h exposure to Al. In contrast, SOD activity in Yanmgai-5 was distinctly higher than that in Jian-864, while CAT and APX activities in Jian- 864 were markedly higher than those in Yangmai-5 after 6 h exposure to Al. There was no remarkable difference in MDA content in both genotypes at 3 h exposure to Al, whereas MDA content in root tips of Yangmai-5 was significantly higher than that of Jian-864 after 6 h exposure to Al. Meanwhile, H2O2 content was also enhanced with the increasing exposure time to Al treatment, with more accumulation in Yangmai-5. In conclusion, compared with Al-tolerant genotype (Jian-864), SOD activity in root tips of Al-sensitive genotype (Yangmai-5) was much higher and CAT and APX activities were relatively lower. As a result, H2O2 was excessively accumulated in Yangmai-5 and then leaded to oxidative stress and severe lipid peroxidation, thereby significantly inhibiting root elongation.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2009年第6期619-625,共7页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 国家自然科学基金资助项目(30771292 30270784) 教育部创新团队 教育部博士点基金资助项目(20060335014) 浙江省自然科学基金资助项目(394143)
关键词 铝毒 小麦 根尖 根系伸长 抗氧化酶 aluminum toxicity wheat root tips root elongation antioxidant enzymes
  • 相关文献

参考文献29

  • 1Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J].Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 237-260.
  • 2Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants [J].International Review of Cytology, 2000, 200: 1-46.
  • 3Ma J F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants[J]. International Review of Cytology, 2007, 264 : 225 -252.
  • 4Cackmak I, Horst W J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max ) [J]. Physiologia Plantarum, 1991, 83: 463-468.
  • 5Zheng S J, Yang J L. Target sites of aluminum phytotoxicity[J].Biologia Plantarum, 2005, 49:321-331.
  • 6Ahn S J, Matsumoto H. The role of the plasma membrane in the response of plant roots to aluminum toxicity [J]. Plant Signaling and Behavior, 2006, 1(2) : 37- 45.
  • 7Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots[J]. Plant Physiology, 2001, 125: 199-208.
  • 8Kobayashi Y. Yamamoto Y, Matsumoto H. Studies on the mechanism of aluminum tolerance in pea (Pisum sativum L. ) using aluminum-tolerant cuhivar 'Alaska' and aluminum-sensitlve cultivar 'Hyogo'[J].Soil Science and Plant Nutrition, 2004, 50(2): 197-204.
  • 9Basu U, Good A G, Taylor G J. Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum[J]. Plant and Cell Environment, 2001, 24: 1269-1278.
  • 10Meriga B, Reddy B K, Rao K R, et al. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa ) [J]. Journal of Plant Physiology, 2004, 161 : 63-68.

二级参考文献5

  • 1Huang Junhua,Plant Soil,1993年,149期,121页
  • 2林咸永,植物营养.生态生理学和遗传学,1993年,248页
  • 3Jan F,Physiologia Plantarum,1991年,83期,441页
  • 4熊毅,中国土壤(第2版),1987年
  • 5邱光葵,庞叔薇.羊毛铬菁R分光光度法测定土壤中的活性铝[J].分析测试通报,1989,8(4):68-71. 被引量:21

共引文献7

同被引文献223

引证文献12

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部