期刊文献+

胶囊内窥图像出血检测中颜色向量相似系数分类器的设计 被引量:1

Design of the Color Vector Similarity Coefficient Classifier for Bleeding Detection in Wireless Capsule Endoscopy Images
下载PDF
导出
摘要 为了提高胶囊内窥图像出血智能识别的识别率,将颜色表示与向量运算相结合,提出了使用颜色向量相似系数度量颜色相似性的新方法,推导了颜色向量相似性系数的定义式.在此基础上,设计了应用于RGB颜色空间的颜色向量相似系数分类器,并结合种子区域生长算法实现了内窥图像出血智能识别的新算法.通过实验验证,该算法的出血检测灵敏度和特异度分别达97%和90%,基本实现了胶囊内窥图像出血智能识别. In order to improve the recognition rate of the bleeding intelligent recognition, the new concept of color vector similarity coefficient was brought forth to measure the color similarity, the calculation formula of the similarity coefficient was also derived. Based on this similarity coefficient the classifier was designed which can be applied in the RGB color space; combining the classifier with the algorithm of seededregion-grow the new algorithm of wireless capsule endoscopy(WCE) image bleeding intelligent recognition was implemented. The experiments show that the sensitivity and the specificity of this algorithm reach 97%, 90% respectively. The WCE image bleeding intelligent recognition is basically realized and will be applied in the WCE images detection to help the clinician.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第11期1715-1719,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(30570485) 国家高技术研究发展计划(863)资助项目(2006AA04Z368)
关键词 胶囊内窥镜 颜色向量相似系数 出血检测 模式识别 wireless capsule endoscopy(WCE) color vector similarity coefficient bleeding detection pattern recognition
  • 相关文献

参考文献8

  • 1Canlas K R, Dobozi B M, Lin S, et al. Using capsule endoscopy to identify GI tract lesions in cirrhotic patients with portal hypertension and chronic anemia[J]. Journal of Clinical Gastroenterology, 2008,42 (7) : 844- 848.
  • 2Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 405(6785): 417- 418.
  • 3Swain P, Iddan G, Meron G, et al. Wireless capsule endoscopy of the small-bowel, development, testing and first human trials [J]. Biomonitoring and Endoscopy Technologies, 2001, 4158 : 19-23.
  • 4Sturniolo G C, Vincenza D L, Vettorato M G, et al. Small bowel exploration by wireless capsule endoscopy: Results from 314 procedures [J]. The American Journal of Medicine, 2006, 119 :341-347.
  • 5Pennazio M. Capsule endoscopy: Where are we after 6 years of clinical use? [J]. Digestive and Liver Disease, 2006, 38(12): 867-878.
  • 6Michel D. Capsule endoscopy in 2005: Facts and perspectives [J]. Best Practice & Research Clinical Gastroenterology, 2006, 20(1): 23-39.
  • 7Liangpunsakul S, Mays L, Rex D K. Performance of given suspected blood indicator [J]. American Journal of Gastroenterology, 2003,98(12) :2676-2678.
  • 8Kodogiannis V S, Boulougoura M, Lygouras J N, et al. A neuron-fuzzy-based system for detection abnormal patterns in wireless-capsule endoscopic images [J]. Neurocomputing, 2007, 70: 704-717.

同被引文献14

  • 1Berens,G.D.Finlayson,G.Qin.Image indexing using compressed colour histograms[J]. IEE Proceedings-Vision,Image and Signal Processing. IET, 2000,147(4): 349-355.
  • 2Yanan Fu,Mandal,M.,Gencheng Guo Y,Mandal M,GUO G.Bleeding region detection in WCE images based on color features and neural network[C]//Circuits and Systems (MWSCAS),2011 IEEE 54th International Midwest Symposium on. IEEE,2011.
  • 3Achanta R,Shaji,A,Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012,34(11): 2274-2282.
  • 4C oimbra,M.T, Cunha,J.P.S.MPEG-7 visual descriptors-contributions for automated feature extraction in capsule endoscopyIEEE Transactions on Circuits and Systems for Video Technology, 2006,16(5): 628-637.
  • 5Jian, gguo Liu,Xiaohui Yuan.Obscure bleeding detection in endoscopy images using support vector machines[J].Optimization and engineering, 2009,10(2) :289-299.
  • 6L Baopu,M O-H Meng. Computer- aided detection of bleeding regions for capsule endoscopy images[J]. Biomedical Engineering,IEEE Transactions on, 2009,56(4): 1032-1039.
  • 7Guobing Pan,Guozheng Yan,Xiang Ling Qiu,et al. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network[J].Journal of medical systems, 201 1, 35(5): 1477-1484.
  • 8Amer A.A1-Rahayfeh,Abdelshakour A. Abuzheid.Detection of bleeding in wireless capsule endoscopy images using range ratio color [J].The International Journal of Multimedia and Applications,2010,2(2).,1-10.
  • 9IHWANG S,OH J H,Cox J,et al. Blood detection in wireless capsule endoscopy using expectation maximization clustering[C]// Medical Imaging. International Society for Optics and Photonics,2006.
  • 10ZHANG L-B,LI Z-H,ZHAO Y-Q,et al.A priority random sampling algorithm for time-based sliding windows over weighted streaming data[C]//Proceedings of the 2007 ACM Symposium on Apptied Computing.New York: ACM,2007.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部