期刊文献+

硫酸钙骨水泥增强骨质疏松股骨粗隆间骨折内固定的有限元分析 被引量:1

Finite-Element Analysis of Injectable Calcium Sulfate Bone Cement Augmentation with Dynamic Hip Screw System for the Treatment of Osteoporotic Intertrochanteric Fractures
下载PDF
导出
摘要 通过有限元分析,研究硫酸钙对稳定型骨质疏松股骨粗隆间骨折内固定增强的影响.建立骨质疏松股骨稳定型粗隆间骨折有限元模型,模拟动力髋螺钉(DHS)固定及硫酸钙增强的DHS固定,分析硫酸钙对DHS固定的增强效果.有限元分析显示,硫酸钙增强后,股骨头部的松质骨最大应力减少了35%,提示螺钉切割出股骨头的可能性减小;而股骨骨折面最大应力从3.7 MPa减少到1.8 MPa,提示硫酸钙增强提高了DHS固定的稳定性.研究结果表明,硫酸钙骨水泥能有效增强骨质疏松性骨折内固定的稳定性,具有较好的临床应用前景. The mechanical performance of the dynamic hip screw (DHS) system augmented with calcium sulfate bone cement (CSC) for the fixation of stable osteoporotic intertrochanteric fracture was evaluated by means of finite element analysis (FEA). Finite element model was used to simulate the stable osteoporotic intertrochanterie fracture with DHS fixation or DHS fixation plus CSC augmentation and the stress distribution was analyzed. With cement augmentation, 35 % reduction of the maximum stress was found in the femur head, suggesting reduced possibility of screw cut-outs. Maximum stress at the fracture plane was also decreased from 3.7 MPa to 1.8 MPa, which indicates improved fixation after CSC augmentation. These results indicate that calcium sulfate cement is effective in augmenting fixation in osteoporotic bone. Calcium sulfate cement has potential application in the treatment of osteoporotic fractures.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第11期1813-1817,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(10872131) 上海市科委项目(08411950500 09dz2200400) 上海市骨科内植物重点实验室建设基金资助项目(08DZ2230330)
关键词 股骨粗隆间骨折 骨折固定 骨增强 骨质疏松症 有限元分析 intertrochanteric fracture fixation , augmentation osteoporosis finite elements analysis(FEA)
  • 相关文献

参考文献13

  • 1Empana J P, Dargent-Molina P, Breart G. Effect of hip fracture on mortality in elderly women:. The EPIDOS prospective study [J]. J Am Geriatr Soc, 2004, 52(5) : 685-690.
  • 2Peleg E, Mosheiff R, Liebergall M, et al. A short plate compression screw with diagonal bolts: A biomechanical evaluation performed experimentally and by numerical computation [J]. Ciin Biomech (Bristol, Avon), 2006, 21(9) :963-968.
  • 3Suhm N, Hengg C, Schwyn R, et al. Mechanical torque measurement predicts load to implant cut-out: A hiomechanical study investigating DHS anchorage in femoral heads [J]. Arch Orthop Trauma Surg, 2007, 127(6) :469-474.
  • 4Adams C I, Robinson C M, Court-Brown C M, et al. Prospective randomized controlled trial of an intramedullary nail versus dynamic screw and plate for intertrochanteric fractures of the femur [J]. J Orthop Trauma, 2001, 15(6) :394-400.
  • 5Augat P, Rapp S, Claes L. A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures [J]. J Orthop Trauma, 2002, 16(5) :311-316.
  • 6Cheng C L, Chow S P, Pun W K, et al. Long-term results and complications of cement augmentation in the treatment of unstable trochanteric fractures [J]. Injury, 1989, 20(3) :134-138.
  • 7Carroll M, Lewis G, Xu J, et al. Evaluation of a synthetic bone defect test model to aid in the selection of materials for use in vertebral body compression fracture repair[J]. Orthopedics, 2004, 27(Sup. 1): 119-122.
  • 8Yu XW, Xie X H, Yu Z F, et al. Augmentation of screw fixation with injectable calcium sulfate bone cement in ovariectomized rats[J].J Biomed Mater Res B Appi Biomater, 2009, 89(1) :36-44.
  • 9Rice J C, Cowin S C, Bowman J A. On the dependence of the elasticity and strength of cancellous bone on apparent density [J]. J Biomech, 1988, 21(2):155-168.
  • 10Radcliffe I A, Taylor M. Investigation into the affect of cementing techniques on load transfer in the resurfaced femoral head: A multi-femur finite element analysis[J]. Clin Biomech (Bristol, Avon), 2007, 22(4) :422-430.

同被引文献17

  • 1Routt ML Jr, Simonian PT, Grujic L. The retrograde medullary su- perior pubic: ramus screw for the treatment of anterior pelvic ring disruptions: a new technique. J Orthop Trauma, 1995, 9( 1 ) :35 - 44.
  • 2Mosheiff R, Liebergall M. Maneuvering the retrograde medullary screw in pubic ramus fractures. J Orthop Trauma, 2002, 16 ( 8 ) : 594 - 596.
  • 3Rubel IF, Seligson D, Mudd L, et al. Endoscopy for anterior pelvis fixation. J Orthop Trauma, 2002, 16(7) :507 -514.
  • 4Zobrist R, Messmer P, Levin LS, et al. Endoscopic - assisted, minimally invasive anterior pelvic ring stabilization: a new tech- nique and case report. J Orthop Trauma, 2002, 16(7) :515 -519.
  • 5Yu X, Tang M, Zhou Z, et al. Minimally invasive treatment for pu- bic ramus fractures combined with a sacroiliac joint complex injmy. Int Orthop, 2013, 37(8) :1547 -1554.
  • 6Janssen D, Zwartel6 RE, Doets HC, et al. Computational assess- ment of press -fit acetabular implant fixation: the effect of implant design, interference fit, bone quality, and frictional properties. Proc Inst Mech Eng H, 2010, 224( 1 ) :67 -75.
  • 7Tile M, Helfat D, Kellam J. Fractures of the pelvis and aeetabu- lum. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2003: 130 - 167.
  • 8Tornetta P 3rd, Matta JM. Internal fixation of unstable pelvic ring injuries. Clin Orthop Relat Res, 1996, (329) :186 -193.
  • 9Gabbe BJ, de Steiger R, Esser M, et al. Predictors of mortality following severe pelvic ring fracture : results of a population - based study. Injury, 2011, 42(10) :985 -991.
  • 10Goldstein A, Phillips T, Selafani SJ, et al. Early open reduction and internal fixation of the disrupted pelvic ring. J Trauma, 1986, 26(4) :325 -333.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部