期刊文献+

加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法 被引量:4

An Effective Numerical Method of the Rayleigh-Stokes Problem for a Heated Generalized Second Grade Fluid With Fractional Derivative
下载PDF
导出
摘要 考虑加热下分数阶广义二阶流体的Rayleigh-Stokes问题(RSP-HGSGF),提出了一种逼近有界区域内RSP-HGSGF的有效数值方法.并且讨论了所提出方法的稳定性和收敛性.最后,利用数值例子体现数值方法的有效性. The Rayleigh-Stokes problem for a heated generalized second grade fluid(RSP-HGSGF) with fractional derivative was considered.An effective numerical method for approximating RSP-HGS- GF in a bounded domain was presented. And the stability and convergence of the numerical method were analyzed. Finally, some numerical examples were presented to show the application of the present technique.
出处 《应用数学和力学》 CSCD 北大核心 2009年第12期1440-1452,共13页 Applied Mathematics and Mechanics
关键词 Rayleigh—Stokes问题 数值方法 稳定性 收敛性 Rayleigh-Stokes problem numerical method stability convergence
  • 相关文献

参考文献17

  • 1Rajagopal K R. On the decay of vortices in a second grade fluid[ J]. Meccanica, 1980,15(3 ) : 185-188.
  • 2Rajagopal K R, Gupta A S. On a class of exact solutions to the equations of motion of a second grade fluid[ J]. International Journal of Engineering Science, 1981,19(7) : 1009-1014.
  • 3Rajagopal K R.A note on unsteady unidirectional flows of a non-Newtonian fluid[J].Int J Non-Linear Mech, 1982,17(5/5) : 369-373.
  • 4Bandelli R, Rajagopal K R. Start-up flows of second grade fluids in domains with one finite dimension [J]. Int J Nan-Linear Mech, 1995,30(6) : 817-839.
  • 5Fetecau C, Zierep J. On a class of exact solutions of the equations of motion of a second grade fluid[J].Acta Mech, 2001,150(1/2) : 135-138.
  • 6Taipel I. The impulsive motion of a flat plate in a visco-elastic fluid[ J]. Acta Mech, 1981,39:277-279.
  • 7Zierep J, Fetecau C. Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid[J].International Journal of Engineering Science, 2007,45 ( 2/8 ) : 617-627.
  • 8SHEN Fang,TAN Wen-chang,ZHAO Yao-hua, et al. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model[J].Nonlinear Anaylysis : Real World Applications, 2006,7(5) : 1072-1080.
  • 9XUE Chang-feng, NIE Jun-xiang. Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous haft-space[ J]. Applied Mathematical Modelling, 2009,33( 1 ): 524-531.
  • 10Liu F, Anh Y, Turner I. Numerical solution of the space fractional Fokker-Planck equation[J]. J Camp Appl Math, 2004,166( 1 ) : 209-219.

同被引文献5

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部