期刊文献+

A hyperbolic Lindstedt-Poincare method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators 被引量:7

A hyperbolic Lindstedt-Poincare method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators
下载PDF
导出
摘要 A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy. A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期721-729,共9页 力学学报(英文版)
基金 supported by the National Natural Science Foundation of China (10672193) Sun Yat-sen University (Fu Lan Scholarship) the University of Hong Kong (CRGC grant).
关键词 Lindstedt-Poincare method Hyperbolic function Nonlinear autonomous oscillator - Homoclinic orbit Lindstedt-Poincare method Hyperbolic function Nonlinear autonomous oscillator - Homoclinic orbit
  • 相关文献

参考文献4

二级参考文献32

共引文献16

同被引文献33

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部