期刊文献+

基于混合粒子群算法的锌电解过程能耗优化 被引量:7

Energy Consumption Optimization of Zinc Electrolysis Process Based on Hybrid Particle Swarm Algorithm
下载PDF
导出
摘要 针对锌电解过程能耗过高的情况,研究其能耗优化问题。根据电力部门实行的分时计价政策,建立以全天锌电解过程电能消耗和总用电费用为目标的锌电解过程多目标优化模型。提出一种带加速度调整的粒子群优化算法,当粒子陷入局部最优时,通过加速度策略增强种群速度,使算法获得持续搜索的能力,有效克服早熟收敛;并和Powell算法相结合构成新的混合粒子群算法,将粒子群算法的全局搜索能力与Powell算法的局部寻优能力有机结合起来。最后将该混合粒子群算法应用于所建优化模型的求解,获得优化生产方案。仿真结果证明了该算法的有效性。工业应用效果表明,按所得优化方案组织生产降低了电能消耗,减少了用电费用。 To high energy consumption of zinc electrolysis process( ZEP), the energy consumption optimization problem is discussed. According to the time-sharing price policy of electric power, a muhi-objective optimization model of ZEP is established . A particle swarm optimization algorithm with accelerated velocity (AVPSO) is proposed. The sustainable searching ability of the algorithm is obtained by the accelerate strategy to the population particles velocity updating, so the premature convergence problem is overcome in effect . The AVPSO is combined with Powell to build a new hybrid PSO(HPSO) algorithm, which employs the global and local searching ability brought by PSO algorithm and Powell algorithm. The HPSO is applied to the multi-objective optimization model to obtain the optimal production scheme. The simulation results show the effectiveness of the proposed algorithm, and the practical application results show that the power consumption and its cost are decreased by using the optimal production scheme.
出处 《控制工程》 CSCD 北大核心 2009年第6期748-751,共4页 Control Engineering of China
基金 国家863计划基金资助项目(2006AA04Z181) 湖南省科技计划基金资助项目(2008CK3072) 湖南省基金资助项目(07JJ6121)
关键词 锌电解过程 能耗优化 粒子群优化算法 混合粒子群算法 zinc electrolysis process energy consumption optimization particle swarm optimization algorithm hybrid particle swarm algorithm
  • 相关文献

参考文献7

  • 1孙强 桂卫华 王雅琳.锌电解过程电流效率的模糊神经网络模型设计.系统仿真学报,2001,13(18):105-107.
  • 2Yang C H,Deconinck G, Li Y G. An optimal power - dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity [ J]. IEEE Transactions on Neural Networks,2002,13 ( 1 ) :229-236.
  • 3Kennedy J, Eberhart R. Particle swarm optimization [ C ]. Perth: Proceedings of IEEE International Conference on Neural Networks, 1995.
  • 4Gaing Z L. A particle swarm optimization approach for optimum design of PID cont roller in AVR system[J]. IEEE Transactions on Energy Conversion ,2004,19 ( 2 ) :384-391.
  • 5Scott A C,Pitblado R M,Barton G W. Experimental determination of the factors affecting zinc electrowinning efficiency[ J]. Journal of Applied Electrochemistry, 1988,18 : 120-127.
  • 6Barton G W,Scotl A C. A validated mathematical model for a zinc electrowinning cell[ J]. Journal of Applied Electrochemistry, 1992, 22 : 104-115.
  • 7吴浩扬,朱长纯,常炳国,刘君华.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30. 被引量:75

二级参考文献4

  • 1张晓馈,控制理论与应用,1998年,15卷,1期,17页
  • 2周远晖,清华大学学报,1998年,38卷,3期,93页
  • 3Qi Xiaofeng,IEEE Trans Neural Networks,1994年,5卷,1期,120页
  • 4贺前华,韦岗,陆以勤.基因算法研究进展[J].电子学报,1998,26(10):118-122. 被引量:23

共引文献74

同被引文献71

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部