期刊文献+

语义场模型研究

Semantic Field Model
下载PDF
导出
摘要 将场理论引入语义空间,提出语义场模型,利用该模型刻划本体概念间的语义联系及语义分布规律.首先,从势、梯度和场强等多个角度对语义场进行描述,其中,势代表场中某一点的语义,体现语义的分布情况;梯度描述了场中局部位置的语义变化情况;场强则体现了场中语义联系的强弱.然后,分析了场源作用范围,给出了本体概念质量计算方法,讨论了势函数影响因子优选问题.最后,指出了语义场在资源语义聚类、支持语义的P2P应用系统等方面的应用前景及思路. The field theory is introduced to the semantic space, and the semantic field model is established to depict the interaction between ontology concepts and the distribution law of semantics. First, this paper formally defines and describes the semantic field from the perspectives of potential, gradient and intensity. The potential represents the semantics of a certain position in the semantic field; the gradient describes local semantics change of the semantic field; the field intensity reflects the strength of semantics association among concepts. Then, a discussion is held on the influence scope of field sources, mass calculation of ontology concepts and the optimal selection of influence factor. Finally, the paper presents the application prospects of semantic field in semantic-based resource clustering, semantic-supporting P2P application system.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第11期1526-1530,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(90204010)
关键词 语义场 本体 概念质量 影响因子 semantic field ontology concept mass influence factor
  • 相关文献

参考文献9

  • 1李德毅,等.人工智能与认知物理学[G].中国人工智能进展.北京:北京邮电大学出版社,2003
  • 2淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:82
  • 3Thomas R Gruber. A translation approach to portable ontology specifications[J].Knowledge Acquisition, 1993,5 (2) : 199.
  • 4Salton G, Wong A, Yang C S. A vector space model for automatic indexing [J]. Communications of ACM, 1975,18(11) : 613.
  • 5LI Yuhua, Bandar A Zuhair, McLean David. An approach for measuring semantic similarity between words using multiple information sources[J]. IEEE Transaction on Knowledge and Data Engineering, 2003,15 ( 4 ): 871.
  • 6Neal Coulter, James French, Ephraim Glinert, et al. The ACM computing classification system EEB/OL]. [2008 - 06 - 29]. http://www, acm. org/class/1998.
  • 7Sergey Brin, Lawrence Page. The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998,30(1 - 7) : 107.
  • 8Mark A Musen, Natasha F Noy, Csongor I Nyulas, et al. Protege ontology library [EB/OL]. [2008 - 07 - 21]. http: //protegewiki, stanford, edu/index, php/Protege Ontology_Library.
  • 9Vapnik Vladimir N. The nature of statistical learning theory[M]. New York: Springer Verlag, 1999.

二级参考文献10

  • 1Jain A K,Murty M N,Flynn P J.Data clustering:a review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 2Za(i)ane O R,Foss A,Lee C H,Wang W.On data clustering analysis:scalability,constraints and validation[A].Proceedings of the Sixth Pacific Asia Conference on Knowledge Discovery and Data Mining[C].Taiwan:Springer-Verlag,2002.28-39.
  • 3Zhang T,Ramakrishnman R,Linvy M.BIRCH:an efficient method for very large databases[A].Proceedings of ACM SIGMOD International Conference on Manangement of Data[C].Canada:ACM Press,1996.103-114.
  • 4Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[A].Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data[C].Seattle:ACM Press,1998.73-84.
  • 5George K,Han E H,Kumar V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].IEEE computer,1999,27(3):329-341.
  • 6Wright W E.Gravitational clustering[J].Pattern Recognition,1977,9(3):151-166.
  • 7Oyang Y J,Chen C Y,Yang T W.A study on the hierarchical data clustering algorithm based on gravity theory[A].The 5th European Conference on Principles and Practive of Knowledge Discovery in Databases(PKDD2001)[C].Freiburg:Springer-Verlag,2001.350-361.
  • 8Landau L D,Lifshitz E M.The classical theory of fields[M].Beijing:Beijing World Publishing Ltd,1999.
  • 9淦文燕.聚类-数据挖掘中的基础问题研究[D].南京:解放军理工大学,2003.
  • 10钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部