期刊文献+

航天器近距离相对运动的鲁棒约束模型预测控制 被引量:7

Spacecraft proximity relative motion under robust constrained model predictive control
下载PDF
导出
摘要 航天器在轨服务对近距离相对运动精确控制的需求越来越强.通过引入集合理论,采用鲁棒可变时域模型预测控制和混合整数线性规划,解决了航天器近距离相对运动的鲁棒控制问题,便于处理控制约束和状态约束,对未知有界干扰、推力误差和导航误差具有鲁棒性.首先,针对航天器近距离相对运动过程中向任意目标集的有限时间机动问题,采用离散化C-W(Clohessy-Wiltshire)动力学模型、时间-能量组合优化目标函数和线性约束表示建立了控制问题模型;其次,给出了基于约束压缩的鲁棒可变时域模型预测控制算法,可以确保鲁棒可行和鲁棒完成;引入i-步鲁棒可控集分析问题可行性,通过集合运算将导航误差处理成有界干扰,采用混合整数线性规划完成了控制器设计.最后,数值仿真验证了模型的有效性. With the development of on-orbit service, there is an increasing desire to control spacecraft proximity operations precisely. By employing the set theory, the mixed-integer linear programming(MILP) and the variable horizon model predictive control(MPC), we solve the robust control problem of spacecraft proximity operations, considering control constraints, state constraints, unknown bounded disturbance, control error and navigation error. Firstly, the finite-time maneuvering with a predetermined target set is formulated by the discrete C-W dynamics, the time-fuel cost function and the linear constraints. Secondly, the robust variable horizon MPC algorithm is introduced to ensure the robust feasibility and the finite-time entry of the target set. The feasibility is analyzed by using the i-step robust controllable set. The navigation error is treated as a bounded disturbance by set operations. The controller is implemented using MILP optimization. Finally, the simulation results show that the controller is efficient and robust.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第11期1273-1276,1281,共5页 Control Theory & Applications
基金 国家"863"计划资助项目(2007AA704114)
关键词 航天器 相对运动 约束压缩 模型预测控制 混合整数线性规划 spacecraft relative motion constraint tightening MPC MILP
  • 相关文献

参考文献8

  • 1RICHARDS A G. Robust constrained model predictive control[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2005.
  • 2曹喜滨,贺东雷.编队构形保持模型预测控制方法研究[J].宇航学报,2008,29(4):1276-1283. 被引量:8
  • 3TILLERSON M, HOW J P. Formation flying control in eccentric orbits[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada: AIAA, 2001:1 - 11.
  • 4TILLERSON M, INALHAN G, HOW J P. Coordination and control of distributed spacecraft systems using convex optimization techniques[J]. International Journal of Robust and Nonlinear Control, 2002, 12(2): 207- 242.
  • 5SCHOUWENAARS T. Safe trajectory planning of autonomous vehicles[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2006.
  • 6KERRIGAN E C. Robust constraint satisfaction: invariant sets and predictive control[D]. Cambridge, UK: University of Cambridge, 2000.
  • 7Richards A, How J. Performance evaluation of rendezvous using model predictive control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, USA: AIAA, 2003:1 - 9.
  • 8RICHARDS A, HOW J P. Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility[C]//Proceedings of the American Control Conference. Denver, Colorado, USA: IEEE, 2003:4034 - 4040.

二级参考文献9

  • 1Kapil V, Sparks A G. Spacecraft formation flying: dynamics and control[J]. Journal of Guidance, Control and Dynamics, 2000, 23(3) : 561 - 564.
  • 2Bertsimas D, Tsitsiklas J N. Introduction to linear optimization [ J ]. Athena Scientific, 1997,11(4) : 214 - 220.
  • 3Richards A G, How J P. Model predictive control of vehicles maneuvers with guaranteed completion time and robust feasibility [ C ]// D. Alazard. American Control Conference. Denver CO : ACC, 2003 : 125 - 131.
  • 4Tillerson M, Inalhan G, How J P. coordination and control of distributed spacecraft systems using convex optimization techniques[J]. Internatianal Journal of Robust and Nonlinear Control, 2002, 12(2) : 207 - 242.
  • 5Breger L S, How J P. Model Predictive Control for Formation Flying Spacecraft[T]. Master thesis of MIT, June, 2004.
  • 6Mueller J B, Thomas S J. Decentralized formation flying control in a multiple-team hierarchy[ J ]. New Trends in Astrodynamnics and Applications, 2005, 6(2): 57- 66.
  • 7Richards A, How J, Schouwenaars T, Feron E. Plime avoidance maneuver planning using mixed integer linear programming[J]. Journal of Guidance, Control and Dynamics, 2002, 25(4) : 755 - 763.
  • 8Mishne D. Formation control of satellites subject to drag variations and J2 perturbations [ J ]. Journal of Guidance, Control and Dynamics, 2004, 27(4) : 685 - 692.
  • 9Naasz B J. Classical Element Feedback Control for Spacecraft Orbital Maneuvers[ T]. Master Thesis of Virginia Polytechnic Institute and State University, July, 2002.

共引文献7

同被引文献53

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部