期刊文献+

SnO_2-LiZnVO_4系湿敏元件电容特性分析

Capacitive characteristic analysis of SnO_2-LiZnVO_4 system humidity sensor
下载PDF
导出
摘要 采用共沉淀法制备SnO2-LiZnVO4系湿敏材料,研究了LiZnVO4的掺杂量对材料湿敏电容的影响。结果表明:LiZnVO4的掺杂量,环境的相对湿度(RH)、测试信号频率对湿敏电容有较大影响。当x(LiZnVO4)为10%时,可使材料具有合适的低湿电容和灵敏度。在100Hz下,当环境的RH从33%上升到93%时,SnO2-LiZnVO4系湿敏材料制备的湿敏元件的电容增量可达起始值的2300%,显示出较高的电容湿度敏感性。湿敏元件的电容响应时间约为54s,恢复时间约为60s。湿滞约为RH6%。 SnO2-LiZnVO4 system humidity sensing materials were prepared by co-precipitation method. The influence of LiZnVO4-doped amount on humidity sensing capacitance of this material was studied. The results show that the humidity sensing capacitance strongly depends on the LiZnVO4-doped amount, relative humidity (RH) of environment, and frequency of measured signal. This humidity sensing material with proper capacitance at lower humidity and sensitivity can be made by doped amount of 10% of LiZnVO4 (mole fraction). The capacitance increment of humidity sensor prepared by humidity sensing material of SnO2-LiZnVO4 system is 2 300% of its initial value when RH of environment is increased from 33% to 93% at 100 Hz, indicating higher capacitance humidity sensitivity. Of the humidity sensor, the capacitance response time for RH-increasing process is about 54 s and recovery time for RH-decreasing process is about 60 s, and the hysteresis is about RH 6%.
作者 胡素梅
机构地区 茂名学院物理系
出处 《电子元件与材料》 CAS CSCD 北大核心 2009年第12期16-18,共3页 Electronic Components And Materials
基金 广东省育苗工程资助项目(No.201179)
关键词 SnO2-LiZnVO4系 湿敏电容 频率特性 响应-恢复特性 湿滞特性 SnO2-LiZnVO4 system humidity sensing capacitance frequency characteristic response-recovery characteristic hysteresis characteristic
  • 相关文献

参考文献9

二级参考文献55

  • 1王海燕,李新建.硅纳米孔柱阵列及其四氧化三铁复合薄膜的湿敏电容特性研究[J].物理学报,2005,54(5):2220-2225. 被引量:4
  • 2许海军,富笑男,孙新瑞,李新建.硅纳米孔柱阵列的结构和光学特性研究[J].物理学报,2005,54(5):2352-2357. 被引量:24
  • 3严百平,朱秉升.Sn-SnO_x薄膜的湿敏特性研究[J].西安交通大学学报,1995,29(4):20-25. 被引量:3
  • 4李莉,童茂松,翁爱华.V_2O_5薄膜在传感器上的研究进展[J].功能材料,2005,36(10):1482-1484. 被引量:12
  • 5周东祥 张绪礼 李标荣.半导体陶瓷及应用[M].武汉:华中理工大学出版社,1994.261-263.
  • 6Kresge C T, Leononowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710--712.
  • 7Fujihara S, Maeda T, Ohgi H, et al, Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability [J]. Langmuir, 2004, 20(15): 6476 -- 6481.
  • 8Shi Y F, Wan Y, Zhao D Y, et al. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route [J]. J Am Chem Soc, 2007, 129(30): 9522--9531.
  • 9Kim J Y, Cho J P. SnO2 filled mesoporous tin phosphate high capacity negative electrode for lithium secondary battery [J]. Electrochem Solid-State Lett, 2006, 9(8): A373-A375.
  • 10Pan Q Y, Xu J Q, Dong X W, et al. Gas-sensitive properties of nanometer-sized SnO2 [J]. Sens Actuat, 2000, B66: 237--239.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部