期刊文献+

基于高阶累积量和支持向量机的信号调制分类 被引量:6

Signal Modulation Classification Based on Support Vector Machines and High-Order Cumulants
下载PDF
导出
摘要 给出了一种基于支持向量机的数字调制信号分类器设计方法。将接收信号的二阶、四阶、六阶累积量作为分类特征向量,利用支持向量机把分类特征向量映射到一个高维空间,并在高维空间中构造最优分类超平面以实现信号分类。文中选用了径向基核函数,使用一对一或一对余多类构造法,并利用交叉验证网格搜索法优化核函数参数,构建了快速稳定的多类支持向量机分类器。仿真实验表明:基于支持向量机的分类器具有很高的分类性能和良好的稳健性。 A classification method based on Support Vector Machine (SVM) is given in the digital modulation signal classification. The second, fourth and sixth order cumulants of received signals are used as classification vectors, then the kernel thought is used to map the feature vector to the high dimensional feature space and the optimum separating hyperplane is constructed in space to realize signal recognition. In order to build an effective and robust SVM classifier, the radial basis kernel function is selected, one against one or one against the rest of multi-class classifier is designed, and the method of parameter selection using cross-validating grid is adopted. Simulation experiments show that the classifier based on SVM has high performance and is more robust.
出处 《信息工程大学学报》 2009年第4期466-470,共5页 Journal of Information Engineering University
关键词 高阶累积量 SVM 核函数 信号分类 high-order cumulant support vector machine kernel function signal classification
  • 相关文献

参考文献10

  • 1Nandi A K, Azzouz E E. Automatic modulation recognition [J]. Signal Processing, 1995, 46 (2): 211 -222.
  • 2Dobre O A, Abdi A, Bar-Ness Y,et al. Survey of automatic modulation classification techniques: classical approaches and new trends [ J]. IET Commun, 2007, 1 (2) :137 -156.
  • 3Han W C, Han H, Wu L N,et al. A 1-Dimension Structure Adaptive Self-organizing Neural Network for QAM Signal Classification [ C ]//Third International Conference on Natural Computation (ICNC 2007). HaiKou, 2007, 24 - 27.
  • 4Cheol-Sun Park, Jun-Ho Choi, Sun-Phil Nah,et al. Automatic Modulation Recognition of Digital Signals using Wavelet Features and SVM [ C ] //ICACT 2008. Korea. 2008,387 - 390.
  • 5李俊俊,陆明泉,冯振明.基于支持向量机的分级调制识别方法[J].清华大学学报(自然科学版),2006,46(4):500-503. 被引量:10
  • 6韩钢,张文红,李建东,陈彦辉.基于高阶累积量和支撑矢量机的调制识别研究[J].系统工程与电子技术,2003,25(8):1007-1011. 被引量:19
  • 7李晓宇,张新峰,沈兰荪.支持向量机(SVM)的研究进展[J].测控技术,2006,25(5):7-12. 被引量:45
  • 8Nello Cristianini.支持向量机导论[M].李周正,译.北京:电子工业出版社,2005.
  • 9王丽 范玉妹 吴娟.关于支持向量机核函数中参数选择的研究.内江师范学院学报,2006,21(1):78-81.
  • 10苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63

二级参考文献48

共引文献132

同被引文献50

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部