期刊文献+

基于识别的单向多样学习图像超分辨率算法设计与实现

Design and Implementation of One-Pass Manifold Learning Image Superresolution Algorithm Based on Recognition
下载PDF
导出
摘要 提出了一种新的图像超分辨率处理算法。首先建立训练图像集,然后对待处理图像和训练集中的特征图像对进行分割、光栅排列和对比度正则化等适当的预处理。待处理图像上的每个局部图像块在训练集中进行多样学习,以获得低分辨图像上不同区域缺乏的高频细节信息,最后使用这些信息预测生成超分辨率图像。实验结果表明,文章算法得到的高分辨率图像能够较大程度上提高图像质量。 A new image superresolution processing algorithm is proposed. Firstly, a training image set is constructed. Secondly, some preprocessing operations are adopted for the object image and the character image of training image set, such as image segmentation, raster permutation, and regularization of contrast. Each local block of the object image suffers the manifold learning from the training set, thus some high frequency detail information, which is scarce for the low-resolution image, can be obtained, finally, the high frequency detail information can be used to predict and produce the superresolution image. Experiment results show that the proposed algorithm is able to improve the image quality comparatively obviously.
出处 《信息工程大学学报》 2009年第4期513-517,共5页 Journal of Information Engineering University
关键词 图像 超分辨率 单向多样学习 识别 image superresolution one-pass manifold learning recognition
  • 相关文献

参考文献11

  • 1Tsai R Y, Huang T S. Multiframe image restoration and registration[ C ]//Huang, T. S. ( Ed. ) : Advances in computer vision and image processing. 1984:317 -339.
  • 2Keren D, Peleg D, Brada R. Image Sequence Enhancement Using Sub-pixel Displacement [ C ]//Proceedings of the Conference of Computer Vision and Pattern Recognition. 1988 : 742 -246.
  • 3Ahunbasak Y, Patti A J. Super-Resolution Still and Video Reconstruction From MPEG-Coded Video [ J]. IEEE Transactions on Circuits and systems for Video Technology, 2002, (4) :217 -226.
  • 4Cheeseman P, Kanefsky B, Kraft R. Super-resolved surface reconstruction from muhiple images [ R]. NASA Ames Research Center, Moffett Field, CA, Tech. Rep. FIA -94 - 12, 1994.
  • 5Schultz R, Stevenson R. Extraction of High-Resolution Frames from Video Sequences [ J]. IEEE Trans. Image Processing, 1996, 5(6) : 996 - 1011.
  • 6Park S C, Park M K, Kang M G. Super-Resolution Image Reconstruction: A Technical Overview [ J ]. IEEE Signal Processing Magazine, 2003, 5( 1 ): 21-36.
  • 7Capel D, Zisserman A. Computer Vision Applied to Super-resolution [ J ]. IEEE Signal Processing Magazine, 2003, 5( 1 ) :75 - 86.
  • 8Jalobeanu A, Blanc-Feraud L. An Adaptive Gaussian Model for Satellite Image deblurring [ J]. IEEE Trans. Image Processing, 2004, 4:613 - 621.
  • 9Patti A J, Ahunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants [ J ]. IEEE Trans. Image Processing, 2001 , (1) : 179 - 186.
  • 10Altunbasak Y, Patti A J. Super-Resolution Still and Video Reconstruction From MPEG-Coded Video [ J ]. IEEE Transactions on Circuits and systems for Video Technology, 2002, (4) :217 - 226.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部