期刊文献+

激光雷达扫描数据的快速三角剖分及局部优化 被引量:5

Fast triangulation and local optimization for scan data of laser radar
下载PDF
导出
摘要 为了研究3维激光雷达测量所得点云数据的三角构网,根据激光雷达逐行扫描特点,采用了改进的三角剖分方法,对点云数据进行不规则三角网格划分。基于激光雷达点云数据位置拓扑信息,分析了相邻扫描线之间数据点的相对位置关系,利用几何关系进行初步配对构网;并结合经典法则对初始网格进行局部优化,得到最终三角网;同时,对优化前后的三角网,提出一种新的评价法则进行剖分效果对比。结果表明,充分利用点云特点进行三角剖分可改进算法。所提出的剖分效果评价法可帮助检验构网质量。 In order to study the triangulation for the point cloud data collected by a three-dimension laser radar, in accordance with the line-by-line characteristics of laser radar scanning, an improved Delaunay triangulation method was proposed to mesh the point cloud data as an irregular triangulation network. Based on the geometric topology location information among radar point cloud data,focusing on the position relationship between adjacent scanning line of the point data,a preliminary match network was obtained according to their geometric relationship. A reasonable triangulation network for the object surface was acquired by means of local optimization on initial mesh by Delaunay rule. Meanwhile, a new judging rule was proposed to contrast the triangulation before and after the optimization on the network. The result shows that triangulation for point cloud with full use of its own characteristics can improve the speed of the algorithm obviously ,and the rule for judging the triangulation can be used to evaluate the quality of network.
出处 《激光技术》 CAS CSCD 北大核心 2009年第6期642-644,647,共4页 Laser Technology
基金 国家自然科学基金资助项目(50805094) 国家九七三重点基础研究发展计划资助项目(2006CB705400)
关键词 图像处理 三角剖分 局部优化 点云数据 激光雷达 image processing triangulation local optimization point cloud data laser radar
  • 相关文献

参考文献4

二级参考文献65

  • 1郭禾,李寒,王宇新,贾棋,刘天阳,唐骏.机器人三维定位系统中关键技术的研究[J].系统仿真学报,2006,18(z1):99-102. 被引量:6
  • 2高智,仲思东,宋丽华.基于激光雷达数据的三维模型重建[J].仪器仪表学报,2004,25(z3):495-499. 被引量:9
  • 3贾永红.基于激光雷达测量技术的矿用汽车在线自动计量系统[J].矿业研究与开发,2006,26(2):62-63. 被引量:4
  • 4[1]Varady T, Martin R R, Cox J. Reverse engineering of geometric models--an introduction [J].Computer Aided Design, 1997, 29(4): 255~268.
  • 5[2]Soderkvist I. Introductory overview of surface reconstruction methods [R]. Department of Mathematics, Lulea University, Sweden, 1999.
  • 6[3]Pratt V. Direct least-squares fitting of algebraic surface [J]. Computer Graphics, 1987, 21(4): 145~152.
  • 7[4]Sclaroff S, Pentland A. Generalized implicit functions for computer graphics [J]. Computer Graphics, 1991,25(4): 247~250.
  • 8[5]Zhou, Kambhamettu C. Extending superquadrics with exponent functions: modeling and reconstruction [J].Graphical Models, 2001, 63: 1~20.
  • 9[6]Sarkar B, Menq C H. Smooth surface approximation and reverse engineering [J]. Computer Aided Design,1991, 23 (9): 623~628.
  • 10[7]Krishnamurhy V, Levoy M. Fitting smooth surfaces to dense polygon meshes [J]. Computer Graphics, 1996,30(4): 313~324.

共引文献57

同被引文献18

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部