摘要
本文对一个包括有梯级水电站在内的水火电力系统建立了最优开机组合和有功功率分配的数学模型,导出了与其等价的整数线性规划模型,然后给出一种有效算法。采用大系统分解协调法将电厂进行两级分解,改进了修正水火电厂出力的Lagrange松弛方法,并采用将模糊数学和运筹学方法结合起来求解梯级水电站经济调度问题。计算表明,日耗煤率有相当的下降,可获较大经济效益。本文提出的数学模型和最优化算法甚易推广应用于其它大区电力系统经济调度问题。
In this paper, we build a mathematical model for optimal unit commitment and active power dispatch of hydro-thermal power systems including cascaded hydropower Stations and derive an efficient algorithm for its equivalent integer linear programming, We decompose the power plants into two classes by using the decomposition and coor-dination method for large-scale systems, and improve the method of Lagrangian multip-liers for modifying hydro-thermal power plants, and finally combine the methods of fuzzy mathematics and operational research for solving economic scheduling problem of cascaded hydropowcr stations.Our computations show that the daily coal consumption rate decreases in considerable percent, and we can obtain larger economic benefit. The mathematical model and optimization algorithms presented in this paper may be easily generalized and applied to economic scheduling problem for other large regional power systems.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1990年第1期103-110,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
中国科学院科学基金