期刊文献+

含硫气井定量风险分析方法 被引量:3

Quantitative Risk Assessment for Natural Gas Well with Hydrogen Sulfide
下载PDF
导出
摘要 随中国经济对石油天然气能源依赖程度的加深,大力开发含硫化氢气田成为重要任务,而定量评价含硫气井的风险显得更加必要和迫切。提出了含硫气井井喷事故硫化氢泄漏扩散过程中个人风险定量计算方法,根据相关统计资料,提出了井喷事故概率的参考值,将该方法应用于川渝地区某含硫气井,获取了该井周边区域个人风险等值线,并与可接受风险水平进行对比分析。结果表明,由于地形条件的影响,在气井周边不同方向的个人风险水平差异很大,可接受风险水平上限值等值线距井口的距离在不同方位上相差可达1000m,在对气井进行定量风险分析时必须充分加以考虑。该方法可为油气田开发企业、安全监管部门对含硫气井开发过程实施定量风险评价和管理提供有效技术手段,并为应急计划区的划分及边界确定提供参考。 With the heavy dependence of domestic economy on oil and gas, the exploitation of natural gas fields with hydrogen sulfide is an argent project in China. The quantitative risk assessment for natural gas wells with hydrogen sulfide is a necessary and impending requirement. A quantitative calculation method for an individual risk for leakage and dispersion process of hydrogen sulfide in blowout of gas wells is proposed in this paper. Based on the statistical analysis of data in literature, the probability of blowout incident is brought forward for reference. The method is applied to a typical gas well in Sichuan and Chongqing district as a practical example. The contour curves of individual risks in the area around the well are obtained, and compared with the acceptable level of the individual risks. The results show that the topographic conditions of the gas well greatly influence the calculation results of the individual risks, the distance between the upper limit isoline of acceptable risk and the well in different directions can reach 1000m. So it must be fully considered when performing the quantitative risk assessment of gas wells. This method offers an effective technical measure for administration departments and enterprises to conduct quantitative risk assessments and risk managements during the exploitation process of natural gas fields with hydrogen sulfide. The method can be used in dividing emergency planning zones and deciding the boundary for natural gas wells with hydrogen sulfide.
出处 《科技导报》 CAS CSCD 北大核心 2009年第22期72-75,共4页 Science & Technology Review
基金 “十一五”国家科技支撑计划项目(2007BAK22B05,2008BAB37B05)
关键词 含硫气井 定量风险分析 井喷事故概率 地形条件 natural gas well with hydrogen sulfide quantitative risk assessment probability of blowout topographic condition
  • 相关文献

参考文献8

  • 1中国安全生产科学研究院.“十五”国家科技攻关计划“城市重大工业危险源评价与监测关键技术研究”专题总结报告[R],2006
  • 2Dowsett I, Holizki L. Public safety considerations near critical sour gas facilities[R]. Beijing: RWDI West Inc, 2004.
  • 3Rezaei C, Al Mehairy M M K, Al Marzooqi A, et al. Health, safety and environment impact assessment for onshore sour gas wells [C]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September-3 October 2001: 71439-MS.
  • 4丁厚成,万成略.风险评价标准值初探[J].工业安全与环保,2004,30(10):45-47. 被引量:31
  • 5高建明,王喜奎,曾明荣.个人风险和社会风险可接受标准研究进展及启示[J].中国安全生产科学技术,2007,3(3):29-34. 被引量:43
  • 6Canada Alberta Energy and Utilities Board. Directive 071: Emergency preparedness and response requirements for the upstream petroleum industry (formerly Guide 71) [EB/OL]. http://www.ercb.ca/docs/ documents/directives/Directive071 2005.pdf, 2003.
  • 7张兴凯,邓云峰,曹登泉,等.AQ2016-2008含硫化氢天然气井失控井口点火时间规定[S].北京:煤炭工业出版社,2009.
  • 8吴庆善,钱新明,郭再富.含硫气井井喷事故受体致死概率分析[J].石油勘探与开发,2009,36(5):641-645. 被引量:12

二级参考文献17

  • 1Canada Alberta Energy and Utilities Board.Directive 071:Emergency Preparedness and Response Requirements for the Upstream Petroleum Industry (formerly Guide 71)[EB/OL].http://www.ercb.ca/docs/ documents/directives/Directive071_ 2005.pdf,2003.
  • 2AQ2016-2008,含硫化氢天然气井失控井口点火时间规定[S].
  • 3Canada Alberta Energy and Utilities Board.EUBH2 S A model for calculating emergency response and planning zones for sour gas facilities,Vol.2:Emergency Response Planning Endpoints[EB/OL].http://www.ercb.ca/docs/public/sourgas/ EUBModelsDraft/Volume2_ERPEndPoints.pdf,2006.
  • 4[5]姜树海.洪灾风险评估和防洪安全决策[M].北京:中国水利水电出版社,2006
  • 5[7]prEN50126.Rail way applications.The specification and demonstration of Reliability,Availability,Mintain ability and Safety(RAMS)[S].CENELEC,European Committee for Electrotechnical Standardisation.
  • 6[9]Bottelberghs P H.Rsk analysis and safety policy developments in the Netherlands[J].Journal of Hazardous Materials,2000,71(1-3):59~84
  • 7[10]Marszal E M.Tolerable risk guidelines[J].ISA Transactions,2001,40(4):391~399
  • 8[11]Faber M H.Risk and safety in civil Engineering[R].Swiss Federal Institute of Technology,Switzerland,2001
  • 9[12]Suzuki H.Safety target of very large floating structure used as a floating airport[J].MarineStructures,2001,14(1-2):103~113
  • 10席学军,邓云峰.井喷硫化氢扩散分析[J].中国安全生产科学技术,2007,3(4):20-24. 被引量:50

共引文献82

同被引文献31

  • 1施林圆,郑洁,李晶.四川输气站场风险评价研究[J].天然气工业,2004,24(11):135-138. 被引量:28
  • 2欧剑,相臻.模糊数学在天然气管道内腐蚀评价中的应用[J].腐蚀科学与防护技术,2006,18(5):389-390. 被引量:6
  • 3杜志敏.国外高含硫气藏开发经验与启示[J].天然气工业,2006,26(12):35-37. 被引量:52
  • 4张明广,蒋军成,潘旭海.基于GIS的重大危险源风险管理辅助决策系统[J].天然气工业,2007,27(7):115-117. 被引量:13
  • 5Vesely WE, Goldberg FF, Roberts NH, Haasl DF. Fault tree handbook, NUREG-0492 [Z]. Washington DC: US NRC; 1981.
  • 6Groen FJ, Mosleh A, Smidts C. Automated modeling and analysis of common cause failure with QRAS [Z]. Proceedings of the'ISSC 2002, Denver, Colorado 2002.
  • 7Marseguerra M., Zio E. Monte Carlo simulation for modelbased fault diagnosis in dynamic systems [J]. Reliab Eng Syst Saf, 2009,94: 180-186.
  • 8Doucet A, Godsill S, Andreu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Stat Comput 2000; 10:197-208.
  • 9Smith C, O'Connor B. Probabilistic risk assessment for the international space station PRA [Z]. In: Proceedings of the ESREL 2001, Torino, Italy; September 16-20, 2001.
  • 10王遇冬,何宗平.天然气处理与安全[M].北京:中国石化出版社,2008.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部