期刊文献+

LDPC和积译码的一种改进算法

An enhanced algorithm based on sum-product decoding of LDPC
下载PDF
导出
摘要 性能逼近Shannon限的低密度奇偶校验(LoW-Density Pa rity-Check,LDPC)纠错码,在实际应用中需要解决的问题是尽可能降低译码的复杂度.本文概要分析了低密度奇偶校验码的和积译码算法,并基于该算法,提出了一种新的LDPC的和积译码改进算法—差分译码算法,选择若干个绝对值最小的差分值进行运算.理论分析和仿真验证结果表明:本文提出的改进算法可进一步降低了译码复杂度,并使译码性能得到一定提高. The Low Density Parity Check (LDPC) error correcting code needs to solve the problem of minimizing the complexity of decoding as far as possible in practical application, whose performance approaches to the Shannon delimitation. This paper is focused on researching in the sum-product decoding algorithm of LDPC (Low-Density Parity-Check, LDPC), and a modified differential decoding algorithm is developed based on it, which selects the smallest absolute value of difference value to carry out operations. The theoretical analysis and simulation results show that the improved algorithm can further reduce the decoding complexity and the decoding performance would certainly be boosted to some extent.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期388-391,共4页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金委员会创新研究群体科学基金(50421703)
关键词 低密度奇偶校验码 和积译码算法 差分译码算法 LDPC sum-product decoding algorithm differential decoding algorithm
  • 相关文献

参考文献5

二级参考文献18

  • 1周伟,门爱东,赵黎晔,全子一.一种有效的FG-LDPC译码方法[J].北京邮电大学学报,2007,30(2):63-66. 被引量:1
  • 2GALLAGER R G. Low-density parity-check codes[J]. IRE Transactions On Information Theory, 1962:8(1):21-28.
  • 3GALLAGER R G. Low-Density Parity-Check Codes[D]. Cambridge, MA: MIT Press, 1963.
  • 4MACKAY D J C, NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996,32(18): 1645-1646.
  • 5MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Trans Information Theory, 1999, 45(2):399-431.
  • 6WIBERG N. Codes and Decoding on General Graphs[D]. Linkoping Univ, Linkoping,Sweden, 1996.
  • 7KOU Y, LIN S, FOSSORIER M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans Inform Theory, 2001, 47(7): 2711-2736.
  • 8靳蕃,陈志.组合编码原理及应用[M]上海:上海科学技术出版社,1994.
  • 9COOLSAET K. Cyclic difference sets[EB/OL]. http://www. inference.phy.cam.ac.uk/cds, 2003.
  • 10MACKAY D J C. Encyclopedia of sparse graph codes[EB/OL]. http://www.inference.phy.cam.ac.uk/mackay/codes/data.html, 2003.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部