摘要
Two basic motivations for an upgraded JLab facility are the needs: to determine the essential nature of light-quark confinement and dynamical chiral symmetry breaking (DCSB); and to understand nucleon structure and spectroscopy in terms of QCD's elementary degrees of freedom. During the next ten years a programme of experiment and theory will be conducted that can address these questions. We present a Dyson- Schwinger equation perspective on this effort with numerous illustrations, amongst them: an interpretation of string^breaking; a symmetry-preserving truncation for mesons; the nucleon's strangeness σ-term; and the neutron's charge distribution.
Two basic motivations for an upgraded JLab facility are the needs: to determine the essential nature of light-quark confinement and dynamical chiral symmetry breaking (DCSB); and to understand nucleon structure and spectroscopy in terms of QCD's elementary degrees of freedom. During the next ten years a programme of experiment and theory will be conducted that can address these questions. We present a Dyson- Schwinger equation perspective on this effort with numerous illustrations, amongst them: an interpretation of string^breaking; a symmetry-preserving truncation for mesons; the nucleon's strangeness σ-term; and the neutron's charge distribution.
基金
Supported by National Natural Science Foundation of China (10705002)
Department of Energy, Office of Nuclear Physics(DE-FG03-97ER4014, DE-AC02-06CH11357)