期刊文献+

基于BP神经网络的虚假财务报告识别 被引量:2

Detection of Fraudulent Financial Statements Based on BP Neural Network
原文传递
导出
摘要 针对虚假财务报告的特点,设计了一种基于BP(反向传播)神经网络的虚假财务报告识别模型。根据1999-2002年的年度审计报告意见。从上市公司中,选择确定了44家虚假财务报告样本,并按照一定的标准选择了44家真实财务报告样本,这88个样本构成训练数据集。类似地,从2003-2006年的上市公司中,选择了73家虚假财务报告样本和99家真实财务报告样本,这172个样本构成测试数据集。10个财务指标被选择为识别变量,使用训练数据集对BP神经网络模型进行训练,并将训练后的模型对测试数据集进行测试,取得了较好的实验结果。 Considering the characteristics of fraudulent financial statements(FFS), this paper designs a FFS detection model based on BP neural network. To carry out the experiment, we choose 44 FFS according to the auditing reports and 44 true financial statements according to some specific standards during 1999-2002 as training data set. Similarly, 73 FFS and 99 true financial statements during 2003-2006 are chosen as testing data set. Ten financial ratios are chosen as detection variables. We train the model by using training data set and apply the trained model to the testing data set, good experimental results are obtained.
机构地区 江西财经大学
出处 《系统工程》 CSCD 北大核心 2009年第10期70-75,共6页 Systems Engineering
关键词 虚假财务报告 识别 BP神经网络 识别变量 Fraudulent Financial Statement Detection BP Neural Network Detection Variable
  • 相关文献

参考文献9

  • 1Charalambos S T. Detecting false financial statements using published data: some evidence from Greece [J].Managerial Auditing Journal, 2002, 17(4):179-191.
  • 2Kirkos E, Spathis C, Manolopoulos Y. Data mining techniques for the detection of fraudulent financial statements [J]. Expert Systems with Applications, 2007,32 (4) : 995- 1003.
  • 3Fanning K, Cogger K O. Neural network detection of management fraud using published financial data [J].International Journal of Intelligent Systems in Accounting, Finance & Management, 1998,7(1): 21 -41.
  • 4Lin J W, Hwang M I, Beeker J D. A fuzzy neural network for assessing the risk of fraudulent financial reporting [J]. Managerial Auditing Journal, 2003, 18(8) : 657-665.
  • 5Kotsiantis S, et al, Forecasting fraudulent financial statements using data mining[J]. International Journal of Computational Intelligence, 2006,3 (2) : 104- 110.
  • 6韩力群.人工神经网络[M].北京:北京邮电大学出版社,2006.
  • 7Stice J. Using financial and market information to identify pre-engagement market factors associated with lawsuits against auditors[J]. The Accounting Review, 1991,66 (3) : 516- 533.
  • 8Persons O S. Using financial statement data to identify factors associated with fraudulent financial reporting[J].Journal of Applied Business Research, 1995,11(3):38-46.
  • 9Treadway Committee. Fraud commission issues final report [J]. Journal of Accountancy, 1987, (11):34.

共引文献6

同被引文献25

  • 1梅国平,陈孝新,毛小兵.基于主成分分析的企业会计信息失真预测模型[J].当代财经,2006(2):119-124. 被引量:13
  • 2Persons O. Using Financial Statement Data to Identify Factors Associated with Fraudulent Financial Reporting[J]. Journal of Applied Business Research, 1995,11(3):38-46.
  • 3Beneish M. D. Detecting GAAP Violation: hnplications for Assessing Earnings Management among Firms with Extreme Financial Performance[J]. Journal of Accounting and Public Policy, 1997,16(3):271-309.
  • 4Beneish M. D. Incentives and Penalties Related to Earnings Overstatements that Violate GAAP[J]. The Accounting Review, 1999, 74(4):425-457.
  • 5Hansen J. V., McDonald J. B., Messier W. F., et al. A Generalized Qualitative-response Model and the Analysis of Management Fraud[J]. Management Seienee, 1996,42(7):1022-1032.
  • 6Lee T. A., Ingram R. W., Howard T. P. The Difference between Earnings and Operating Cash Flow as an Indicator of Financial Reporting Fraud[J]. Contemporary Accounting Research, 1999,16(4):749-787.
  • 7Bell T., Carcello J. A Decision Aid for Assessing the Likelihood of Fraudulent Financial Reporting[J]. Auditing: A Journal of Practice and Theory, 2000,9(1):169-178.
  • 8Green B. P., Choi J. H. Assessing the Risk of Management Fraud through Neural-network Technology[J]. Auditing: A Journal of Practice and Theory, 1997,16(1):14-28.
  • 9Fanning K., Cogger K. Neural Network Detection of Management Fraud Using Published Financial Data[J]. International Journal of Intelligent Systems in Accounting, Finance and Management, 1998,7(1):21-24.
  • 10Kirkos E., Spathis C., Manolopoulos Y. Data Mining Techniques for the Detection of Fraudulent Financial Statements[J]. Expert Systems with Applications, 2007,32(4):995-1003.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部