期刊文献+

基于PrefixSpan的序列模式挖掘改进算法 被引量:13

Improved Algorithm for Sequential Pattern Mining Based on PrefixSpan
下载PDF
导出
摘要 针对序列模式挖掘算法PrefixSpan在挖掘过程中需要构造大量投影数据库的不足,提出IPMSP算法,在递归挖掘过程中,通过检查序列数据库关于前缀的前缀,避免对同一频繁前缀模式构造重复投影数据库,同时舍弃对非频繁项的存储并在投影序列数小于最小支持度时停止扫描投影数据库,从而提高PrefixSpan算法的时空性能。实验结果证明,IPMSP算法在时间和空间性能上优于PrefixSpan算法。 Aiming at the PrefixSpan algorithm produce huge amount of project databases in mining sequence patterns, this paper proposes an Improved PrefixSpan algorithm for Mining Sequential Patterns(IPMSP) alaorithm. By avoid produce duplicated project databases with the same prefix pattern through checking the prefix with regard to prefix of the sequence database and abnegating the non-frequent items and project databases which sequential number is lower than minimum support in the recursive mining process, the performance of Pref'ixSpan is well improved. Experiment results shows that the time and space performance of IPMSP algorithm are better than that of PrefixSpan.
作者 汪林林 范军
出处 《计算机工程》 CAS CSCD 北大核心 2009年第23期56-58,61,共4页 Computer Engineering
关键词 序列模式 PREFIXSPAN算法 投影数据库 sequential pattern PrefixSpan algorithm project database
  • 相关文献

参考文献5

  • 1Agrawal R, Srikant R. Mining Sequential Pattems[C]//Proc. of the 11th Int'l Conf. on Data Engineering. Taipei, China: [s. n.], 1995: 3-L4.
  • 2Srikant R, Agrawal R. Mining Sequential Patterns: Generalizations and Performance Improvements[C]//Proc. of the 5th Int'l Conf. on Extending Database Technology. Avignon, France: [s. n.], 1996: 3-17.
  • 3Zaki M J. SPADE: An Efficient Algorithm for Mining Frequent Sequences[J]. Machine Learning Journal, Special Issue on Unsupervised Learning, 2001, 42(1/2): 31-60.
  • 4Pei Jian,- Han Jiawei, Mortazavi B, et al. FreeSpan: Frequent Pattern-projected Sequential Pattern Mining[C]//Proe. of the 6th Int'l Conf. on Knowledge Discovery and Data Mining. New York, USA: [s. n.], 2000: 355-359.
  • 5Pei Jian, Han Jiawei, Mortazavi-Asl B, et al. Mining Sequential Patterns by Pattern-growth: The PrefixSpan Approach[J]. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(11): 1424-1440.

同被引文献101

引证文献13

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部