期刊文献+

Sierpinski地毯上的一类Whitney临界集

A Class of Whitney Critical Sets on Sierpinski Rug
下载PDF
导出
摘要 以Sierpinski地毯为例,在其上构造Hausdorff维数为S的一类连通集合,其中S=ln(30+31+…+3n)ln3n,n 1.然后证明这些连通集均为Whitney临界集。从而得到不是Whitney临界集的Sierpinski地毯可以包含Whitney临界集。 A class of connected sets, whose Hausdorff dimension was S=In(30+3^1+…+3n)/In3^n,n≥1 was constructed on the Sierpinski Rug. When n was no less than 1, all the connected sets were Whitney' s critical sets. The Sierpinski Rug which was not Whitney's critical set could contain Whitney' s critical set was given in this paper.
作者 刘小弟
出处 《贵州科学》 2009年第3期44-46,53,共4页 Guizhou Science
关键词 WHITNEY临界集 SIERPINSKI地毯 HAUSDORFF维数 连通集 Whitney critical set, Sierpinski Rug, Hausdorff dimension, connected set
  • 相关文献

参考文献5

二级参考文献12

  • 1[1]Whitney H. A function not constant on a connected set of critical points [J]. Duke Math J, 1935,1:514~517.
  • 2[4]Ziemer W P. Weakly differentiable functions GTM 120 [M]. Spinger-Verlag, 1989.
  • 3[5]Falconer K J.分形集几何学[M].徐州:中国矿业大学出版社,1992.
  • 4H.Federer,Geometric Measure Theory,Grundlehrender Math.Wiss.,vol.153,Springer-Verlag,1969.
  • 5J.E.Hutchison,Fractalsandself-similarity,IndianaUniv.Math.J.,30(1981),714-747.
  • 6A.Norton,A critical set with nonnull image has large Hausdorff dimension,Trans.Amer.Math.Soc.,296(1986),367-376.
  • 7A.Sard,Imagesofcriticalsets,Ann.ofMath.,(2)68(1958),247-259.
  • 8H.Whitney,A function not constant on a connected set of critical points,DukeMath.j.,1(1935),514-517.
  • 9XILifeng.博士后工作报告.1999.3.
  • 10W.P.Ziemer,Weakly Differentiable Functions,GTM120,Springer-Verlag,1989.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部