期刊文献+

离散广义系统稳定半径的研究 被引量:1

Research on stability radius of generalized discrete time systems
下载PDF
导出
摘要 广义矩阵到达不稳定的距离可由系统矩阵束确定.首先定义了离散广义状态系统的稳定半径,并给出了到由正则因果且指数不超过1的矩阵束产生的不稳定距离的计算式,最后将其转化为矩阵的最小奇异值的问题来求解. The concept of "distance to instability" of a matrix is generalized to system pencils.In this paper a suitable measure of the stability radius of a generalized discrete state-system is defined,and a computable expression for the distance to instability is derived for regular causal pencils of index less than or equal to one.At last the problem has been solved by converting it into the problem of minimizing the smallest singular value of a certain matrix.
出处 《沈阳工程学院学报(自然科学版)》 2009年第4期394-396,共3页 Journal of Shenyang Institute of Engineering:Natural Science
关键词 稳定半径 离散 广义系统 正则束 stability radius discrete generalized system regular pencil
  • 相关文献

参考文献8

  • 1Byers R, Nichols N K. On the stability radius of generalized state - space systems, Linear Algebra-App [J]. Institute for Mathematics and Applications, 1992:988.
  • 2Byers R. A bisection method for measuring the distance of a stable matrix to the unstable matrices [ J ]. On Scientific and Statistical Computing, 1988:875 - 881.
  • 3Hinrichsen D,Motscha. Optimization problems in the robustness analysis of linear state space systems [J]. Institute for Dynamische Systems, 1987.
  • 4Van Load C. How near is a stable matrix to a unstable matrix [J]. Contemporary Mathematics, 1985, ( 47 ) :465 - 477.
  • 5Campbell S L. Singular Systems of Differential Equations [M]. London: Pitman, 1980.
  • 6Gantmacher F R. The theory of Matrices [M]. New York: Chelsea, 1974.
  • 7Kautsky J, Nichols N K, Chu K W E. Robust pole assignment in singular control systems[J]. Liner Algebra and Its Applications, 1989 ( 121 ):9 - 37.
  • 8Golub G H, Van Loan C. Matrix Computations [ M ]. Baltimore : The Johns Hopkins Press, 1983.

同被引文献7

  • 1Byers R. A bisection method for measuring the distance of a stable matrix to the unstable matrices~ J~. SIAM Journal,On Scientific and Statistical Computing, 1988:875 -881.
  • 2Hinrichsen D, Motscha. Optimization problems in the robustness analysis of linear state space systems [ R ]. Institute for Dynamische Systems, Tech. Report Nr. 169, University at Breman, 1987.
  • 3Van Load C. How near is a stable matrix to a unstable matrix[ J]. Contemporary Mathematics, 1985, (47) :465 - 477.
  • 4Byers R, Nichols N K. On the stability radius of generalized state-space systems [ J ]. Linear Algebra-App. Institute for Mathematics and Applications, University of Minnesota, Minnesota, 1992 : 988.
  • 5Nguen Khoa son, Pham Huu anh ngoc. Robust stability of positive linear time-delay systems under affine parameter perturbation [ J ]. Acta Mathematica Vientamica, 1999, 24 (3) :353 -372.
  • 6Wim Michiels, Kirk Green, Thomas Wagenkneecht, et al. Pseudospectra and stability radii for analytic matrix functions with application to time-delay systems [ R ]. Report TW425, 2005.
  • 7Nguen Khoa son, Pham Huu anh ngoc. Stability Radii of linear discrete-time systems with delays [ J ]. Vietnam Journal Mathematics,2001,29 (4) : 379 - 384.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部