期刊文献+

基于粒特征和连续Adaboost的人脸检测 被引量:3

Face detection using real Adaboost on granular features
下载PDF
导出
摘要 提出了一种基于粒特征和连续Adaboost算法的人脸检测方法.它使用粒特征并扩展贝叶斯决策弱分类器,设计具有连续置信度输出的查找表型弱分类器形式,构造出弱分类空间,使用大规模的训练集和验证集,采用连续Adaboost算法学习得到Boosting动态级联型的人脸检测器.在CMU-MIT正面人脸测试集上,误报20个时,检测率为90%以上.在一台Pentium Dual-1.2 GHz的PC上,处理一幅大小为320×240像素大小的图片平均需100 ms.实验结果表明该方法取得了比较好的精度和速度. A face detection method based on sparse granular features and the real adaptive boosting (Adaboost) meta-algorithm was proposed. A sparse granular feature set was introduced into the Adaboost learning framework. A weak look-up-table (LUT) type classifier with real confidence output was designed by extending the Bayesian stump. Then, the space of the weak classifier was constructed. The Adaboost cascade face detector was taught by using a large training set and an evaluation set. Experiments were performed on the CMU-MIT dataset, a standard public data set for benchmarking frontal face detection systems. The detection rate reached over 90% when false alarms were 20. The average processing time on a Pentium Dual-1.2GHz PC was about 100 ms for a 320×240-pixel image. This shows the proposed method provides good precision and speed.
出处 《智能系统学报》 2009年第5期446-452,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60702029)
关键词 粒特征 贝叶斯决策 连续ADABOOST Boosting级联 人脸检测 granular features Bayesian stump real Adaboost boosting cascade face detection
  • 相关文献

参考文献21

  • 1ROWLEY H, BALUJA S, KANADE T. Rotation invariant neural network-based face detection [ C ]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Santa Barbara, USA, 1998: 38-44.
  • 2SCHNEIDERMAN H. Learning a restricted Bayesian network for object detection[ C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington DC, USA, 2004: 639-646.
  • 3OSUNA E, FREUND R, GIROS! F. Training support vector machines: an application to face detection [ C ]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997: 130-136.
  • 4HEISELE B, SERRE T, PRENTICE S, et al. Hierarchical classification and feature reduction for fast face detection with support vector machines [ J ]. Pattern Recognition, 2003, 36(9): 2007-2017.
  • 5VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [ C ]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Kauai Marriott, USA, 2001: 511-518.
  • 6LEVI K, WEISS Y. Learning object detection from a small number of examples: the importance of good features [ C ]//Pmc of IEEE Conf on Computer Vision and Pattern Recognition. Washington DC, USA, 2004: 53-60.
  • 7LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection [ C ]//Proc of IEEE Conf on Image Processing. New York, USA, 2002: 900-903.
  • 8HUANG Chang, AI Haizhou, LI Yuan, et al. High-performance rotation invariant multiview face detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (4) : 671-686.
  • 9ABRAMSON Y, STEUX B. YEF real-time object detection [ C ]//Proc of International Workshop Automatic Learning and Real-Time. Siegen, Germany, 2005: 5-13.
  • 10XIAO Rong, ZHU Long, ZHANG Hongjiang. Boosting chain learning for object detection [ C ]//Proc of IEEE Conf on Computer Vision. Nice, France, 2003 : 709-715.

二级参考文献13

  • 1B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.
  • 2H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999.
  • 3R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53.
  • 4H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000.
  • 5E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997.
  • 6V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999.
  • 7P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001.
  • 8Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156.
  • 9R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336.
  • 10Y. Li, S. Gong, H. Liddell. Support vector regression and classification based multi-view face detection and recognition.IEEE Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000.

共引文献65

同被引文献31

  • 1吴锐珍,张年琴.基于adaboost算法的车牌检测[J].西安航空技术高等专科学校学报,2007,25(1):43-45. 被引量:2
  • 2BARGETON A,MOUTARDE F,NASHASHIBI F,BRADAI B.Improving pan-European speed-limit signs recognition with a new "global number segmentation before digit recognition[C]//IEEE Intelligent Vehicles Symposium.Eindhoven,Netherlands,2008:349-354.
  • 3KELLER C G,SPRUNK C,BAHLMANN C,GIEBEL J,BARATOFF G.Real-time recognition of US speed signs[C]//IEEE Intelligent Vehicles Symposium.Eindhoven,Netherlands,2008:518-523.
  • 4LOY G,BARNES N.Fast shape-based road sign detection for a driver assistance system[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Sendai,Japan,2004:70-75.
  • 5BAHLMANN C,ZHU Ying,RAMESH V,PELLKOFER M,KOEHLER T.A system for traffic sign detection,tracking,and recognition using color,shape,and motion information[C]//IIEEE Intelligent Vehicles Symposium.Las Vegas,USA,2005:255-260.
  • 6VIOLA P,JONES M.Robust real-time object detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 7OJALA T,PIETIK(A)INEN M,M&ENP(a)(a) T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987.
  • 8ZHANG Lun,CHU Rufeng,XIANG Shiming,LI S Z.Face detection based on multi-block LBP representation[C]//Proceedings of IAPR/IEEE International Conference on Biometrics.Seoul,Korea,2007:11-18.
  • 9BRADLEY G,ROTH G.Adaptive thresholding using integral image[J].Journal of Graphics Tools,2007,12(2):13-21.
  • 10FEI B,LIU J.Binary tree of SVM:a new fast multiclass training and classification algorithm[J].IEEE Trans on Neural Networks,2006,17(3):696-704.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部