期刊文献+

钢坯入库路径优化模型与算法

Models and Algorithms of Path Optimization for Loading of Steel
下载PDF
导出
摘要 在钢铁工厂的车间里,钢坯入库是一道非常重要的工序,它可归结为装箱问题。文中根据某钢厂的实际情况建立了相应的数学模型,以减少天车的行走距离,提高库房的利用率。通过分析天车行走总距离与钢坯入库顺序的关系,提出并论证了单存储区的最小入库序列所满足的性质,并利用该性质设计了多存储区的入库算法。多组模拟实验数据测试表明,单存储区测试结果验证了最小入库序列性质的正确性,多存储区测试结果表明了文中算法可大量缩短天车行走总距离和提高库房利用率。 In steel factories, the loading of steel is a very important process and it can be attributed to bin- packing problcm . To reduce the mobile distance of crane and improve the utilization of warehouse,a model to solve this problem is established according to the actual situation in a steel plant. Based on this rachel, analysing the contacts between walking distance of crane and storage orders of steel, a property which the minimal loading sequences of single - storage - area must satisfy is put forward and proved, then a kind of loading algorithm basis of that property for multi - storage - area is proposed. The test results of single - storage - area are verified that correctness of the property and the test results of multi - storage - area show that the algorithm can greatly reduce the crane walking distance and improve the utilization rate of the warehouse.
出处 《计算机技术与发展》 2009年第12期196-200,共5页 Computer Technology and Development
基金 国家自然科学基金项目(90718009) 上海高可信计算实验室开放项目 贵州省科学技术基金(黔科合J字(2009 2123))
关键词 装箱问题 可变路径 固定路径 最小入库序列 bin packing variable path fixed path minimal loading sequences
  • 相关文献

参考文献7

二级参考文献34

  • 1丁香乾,韩运实,张晓丽.自适应遗传算法解决集装箱装载问题的方法探讨[J].中国海洋大学学报(自然科学版),2004,34(5):844-848. 被引量:9
  • 2[1]Coffman E G,Garey M R,Johnson D S.Approximation algorithms for bin-packing:a survey.In:ed.Hochbaum D.Approximation Algorithms for NP-Hard Problems.Boston:PWS Publishing,1996:46-93
  • 3[2]Johnson D S.Fast algorithms for bin-packing.Journal of Computer and System Sciences,1974;8(3):272-314
  • 4[3]Lee C C,Lee D T.A simple on-line packing algorithm.Journal of ACM,1985 ;32(3):562-572
  • 5[4]Garey M R,Johnson D S.Computers and Intractability:a guild to the theory of NP-co mpleteness.New York:W.H.Freeman and Company,1978
  • 6[5]Johnson D S,Demers A,Ullman J D,et al.Worst-case performance bounds for simple one-dimensional packing algorithms.SIAM Journal of Computing,1974;3(4):299-325
  • 7[6]Coffman E G,So K,Hofri M,et al.A stochastic model of bin packing.Information and Control,1980;44(2):105-115
  • 8[7]Johnson D S.Near optimal bin-packing algorithms[Ph D dissertation].MIT,Massachusetts,1973
  • 9[10]Chandra B.Does randomization hel Pin on-line bin-packing? IPL,1992:43(1):15-19;
  • 10[11]Kenyon C.Best-fit bin-packing with random order.May 26,1997

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部