期刊文献+

网络图像检索重排序系统建模和仿真

Modeling and Simulation of Web Image Retrieval Re-ranking System
原文传递
导出
摘要 基于关键词的网络图像检索得到的结果往往是海量且无序的,给用户造成不便。本文构建了一个网络图像检索结果重排序系统并进行了仿真。提出了一种利用图像SIFT局部特征构建图像间视觉Graph结构对图像进行聚类的重排序算法,并引入检索关键词的网络翻译以提高检索效率。仿真结果证明,系统的重排序结果满足网络用户的检索期望,验证了算法的有效性。 The results of web image retrieval based on key-word query tend to be huge in quantity and disordered, which causes much inconvenience to users. In this paper, a re-ranking system of web image retrieval results is constructed and simulation is made. Also a re-ranking algorithm is proposed, which use SIFT local features of the images to construct visual graph among images so as to cluster the images, in the same time Web Explanation of keywords is introduced to enhance the efficiency of retrieval. Experiments show that re-ranking results are well meeting the expectation of web users, and the efficiency of the algorithm is verified.
出处 《电子技术(上海)》 2009年第11期47-49,46,共4页 Electronic Technology
关键词 网络图像检索 尺度不变特征变换 网络翻译 重排序 Web image retrieval SIFT graph Web Explanation re-ranking
  • 相关文献

参考文献5

  • 1Fergus R, L. Fei-Fei, Perona P. et al. Leaming object categories from Google's image Search.ICCV 2005. Tenth IEEE International Conference on Computer Vision, Oct. 17-21,2005[C]. Beijing,[s.n].
  • 2Park G, Baek Y, Lee H K. Web image retrieval using majority-based ranking approach[J]. Multimed Tools Appl, 2006,31 (2): 195-219.
  • 3Cui Jingyu, Wen Fang, Tang Xiaoou. Real time Google and live image search re-ranking[C]// Proceeding of the 16th ACM international conference on Multimedia, October 26-31, 2008, Vancouver, British Columbia, Canada:729-732.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision.2004, 60(2): 91-110.
  • 5Mikolajczyk,K.,Schmid,C.A performance evaluation of local descriptors[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1615-1630.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部