期刊文献+

面向个性化服务的用户兴趣偏移检测及处理方法 被引量:5

Personalized Service Oriented User Interest Shift Detection and Processing
原文传递
导出
摘要 个性化服务系统的目标是根据不同用户的兴趣喜好为不同用户提供针对性服务,其核心是建立关于用户兴趣的描述,即用户兴趣建模。然而,现实生活中用户兴趣常常发生不可预测的变化,兴趣偏移问题一直困扰着建模技术,阻碍个性化服务系统性能的进一步提高。为了寻找切实可行的方法解决兴趣偏移问题,本文针对用户兴趣建模的兴趣偏移问题进行系统的研究,着重分析了兴趣偏移的检测方法和处理机制,对时间窗口、遗忘模型、长短期模型等隐式调整方法以及主要显式检测方法和技术进行了系统评述,并在此基础上提出了针对兴趣偏移问题的进一步研究方向。 The aim of personalized service system is to provide personalized services to different users with various interests and loves, and the core of which is to establish the description of user's interests, i.e. modeling the user's interests. However the user's interests suffer from the problem of shift in the practical life, and this problem has troubled the modeling technique and blocked the further improvement of personalized service system. In order to find practical ways to solve the interest shift problem, on the basis of systematic study on it, this paper focuses on an analysis of the interest shift detection methods and treatment mechanism, and systematically reviews some implicit methods including time window, forgetting model, long-short term model and some main explicit methods and techniques. On this basis we indicate some ways for further research on interest shift problem.
作者 杨杰 陈恩红
出处 《电子技术(上海)》 2009年第11期72-76,63,共6页 Electronic Technology
基金 国家863计划项目(2009AA01Z132) 国家自然科学基金(60775037)
关键词 个性化系统 兴趣偏移 兴趣模型 概念偏移 Personalized system interest shift interest model concept drif
  • 相关文献

参考文献31

  • 1Bonino D, Corno E A Real-time evolutionary algorithm for Web prediction. Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence. Halifax, Canada, Oct. 2003[C].
  • 2Shahabi C, Chen Y S. An adaptive recommendation system without explicit acquisition of user relevance feedback[J]. Distributed and Parallel Databases, 2003,14(2): 173-192.
  • 3Qiu F, Cho J. Automatic identification of user interest for personalized search[C]//Proceedings of the 15th International Conference on World Wide Web. 2006: 727-736.
  • 4Godoy D, Amandi A. Modeling user interests by conceptual clustering[J]. Information Systems, 2006,31(4-5):247-265.
  • 5Claypool M, Brown D. Inferring user interest[J]. IEEE Internet Computing, 2001,5(6):32-39.
  • 6Chen Y S, Shahabi C. Automatically improving the accuracy of user profiles with genetic algorithm. Proceedings of lASTED International Conference on Artificial Intelligence and Soft Computing. 2001 [C].
  • 7Carroll J, Rosson M B. The Paradox of the active user. Interfacing Thought: Cognitive Aspects of Human- Computer Interactfon[M]. Cambridge, MA:MIT Press. 1987.
  • 8Kelly D, Teevan J. Implicit feedback for inferring user preference: A Bibliography. SIGIR Forum[C]//37:18-28. 2003.
  • 9Dumais S, Joachims T, Bharat K, et al. SIGIR 2003 Workshop Report: Implicit measures of user interests and preferences. ACM SIGIR Forum, 2003[C].
  • 10Widyantoro D H, Yen J. Relevant data expansion for learning concept drift from sparsely labeled data[J].IEEE Transactions on Knowledge and Data Engineering, 2005,17(3):.401-412.

同被引文献68

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部