摘要
The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasonable tradeoff between complexity and performance. In this paper, we propose two types of successive interference cancellation (SIC) detection schemes for the asynchronous V-BLAST system, one is characterized by applying Mr successive interference cancellators before a maximal ratio combiner (where Mr is the number of receive antennas), and the other has a maximal ratio combiner before a successive interference cancellator. Since Type Ⅰ consumes more energy of the previously detected signals to recover a signal, Type Ⅱ can offer a better performance and simulations demonstrate its validity.
The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasonable tradeoff between complexity and performance. In this paper, we propose two types of successive interference cancellation (SIC) detection schemes for the asynchronous V-BLAST system, one is characterized by applying Mr successive interference cancellators before a maximal ratio combiner (where Mr is the number of receive antennas), and the other has a maximal ratio combiner before a successive interference cancellator. Since Type Ⅰ consumes more energy of the previously detected signals to recover a signal, Type Ⅱ can offer a better performance and simulations demonstrate its validity.
基金
Supported by the National Natural Science Foundation of China (Grant Nos. 60832007, 60901018, 60902027)
the National High-Tech Research & Development Program of China (Grant No. 2009AA01Z236)