期刊文献+

改进的蚁群算法及其在2DHP模型中的应用 被引量:1

Improved ACO for protein structure prediction using 2D HP lattice model
下载PDF
导出
摘要 为了提高蛋白质折叠问题解的质量,采用蚁群算法对蛋白质的折叠问题进行研究,并且在现有的蚁群算法的基础上成功引入了淘汰和克隆机制,使其具有更好的运算效率,并成功应用到2DHP模型中。在蚁群对最优值进行搜索的过程中,容易出现局部最优点,导致影响解的质量。为了避免计算结果收敛到局部最优点,引入了一种最大最小蚁群策略。选择测试序列进行实验,实验结果表明,该算法在保证解的质量的同时,还具有较高的效率。 For improve the quality of solution to a Protein folding problem, ant colony optimization (ACO) is adopted to solve the protein folding simulations problem. Eliminate and clone based on the existing ACO is introduced. This ACO is applied in 2DHP model. At the same time, the ant colony will converge to local classic result easily when searching, and this process will infect the quality of the result. Avoiding the result converge to the local classic result, involving max-min ant colony. Choose some HP sequence for the experiment. And experiment proved that the improvement have higher efficiency than the older one when the two arithmetic got the same optimal solution.
作者 周方 廖波
出处 《计算机工程与设计》 CSCD 北大核心 2009年第22期5175-5177,5181,共4页 Computer Engineering and Design
关键词 蚁群算法 2DHP模型 淘汰 克隆 最大-最小蚁群 ant colony optimization 2DHP model eliminate clone max-min ant colony
  • 相关文献

参考文献9

  • 1Jiang Tian-Zi,Cui Qing-Hua, Shi Gui-Hua,et al.Protein folding simulations of the hydrophilic model by combining Tabu search with genetic algorithms[C].Chem Phys,2003:2-6.
  • 2Li Zhen-Ping. Combinatorial optimization problems in Bioinformatics[D].Beijing:Academy of Mathematics and System Science,2004:11-15.
  • 3Kim S-Y, Lee J,Lee J.Folding dynamics of small proteins with different types of structures[C].Biological Language Conference Proceedings,Camegie Mellon University, Pittsburgh,2003:218-228.
  • 4Zhang Xiang-Sun,Wang Yong,Zhan Zhong-Wei,et al.Exploring protein's optimal HP configurations by selforganizing[C].Bioinf Comput Biol,2005:385-400.
  • 5Wang Yong, Zhan Zhong-Wei, Wu LingYun, et al.An improved self organizing map algorithm for protein folding and its realization[C].Syst Sci Math Sci,2004:1-12.
  • 6Shmygelska Alena,Hernandez Rosalia Aguirre,Hoos Holger H. An ant colony optimization algorithm for the 2D HP protein folding problem[C].Ant Algorithms,2002:40-53.
  • 7Liang Fa-Ming,Wong Wing Hung.Evolutionary monte carlo for protein folding simulations[C].Chem Phys,2001:74-80.
  • 8Zou Zhongli.Application of guided simulated annealing method on analysis of protein strueture[C].Proseminar of Some Problems About Analysis of Protein Structure,2002:12-15.
  • 9Alena Shmygelska,Holger H Hoos.An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem[C].BMC Bioinformatics,2005:2-3.

同被引文献11

  • 1何莲莲,石峰,周怀北.改进的蚁群算法在2D HP模型中的应用[J].武汉大学学报(理学版),2005,51(1):33-38. 被引量:6
  • 2Lau K F,Dill K A.A lattice statistical mechanics model of the conformational and sequence spaces of proteins[J].Macromolecules,1989,22(10):3986-3997.
  • 3Sali A,Shakhnovich E,Karplus M.How does a protein fold?[J].Nature,1994,369(6477):248-251.
  • 4Unger R,Moult J.Genetic algorithms for protein folding simulations[J].Journal of molecular biology,1993,231(1):75-81.
  • 5Liang F,Wong W H.Evolutionary Monte Carlo for protein folding simulations[J].The Journal of Chemical Physics,2001,115:3374.
  • 6Shmygelska A,Hoos H H.An ant colony optimisation algorithm for the2D and 3D hydrophobic polar protein folding problem[J].BMC bioinformatics,2005,6(1):30.
  • 7Berger B,Leighton T.Protein folding in the hydrophobic-hydrophilic(HP)model is NP-complete[J].Journal of Computational Biology,1998,5(1):27-40.
  • 8Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].Systems,Man,and Cybernetics,Part B:Cybernetics,IEEE Transactions on,1996,26(1):29-41.
  • 9Dorigo M,Di Caro G.Ant colony optimization:a new meta-heuristic[C].Evolutionary Computation,1999.CEC 99.Proceedings of the1999 Congress on.IEEE,1999,2.
  • 10Dorigo M,Di Caro G,Gambardella L M.Ant algorithms for discrete optimization[J].Artificial life,1999,5(2):137-172.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部