期刊文献+

一类Markov跳变神经网络的时滞相关鲁棒稳定性 被引量:2

Delay-dependent robust stability for a class of Markov jumping neural networks
下载PDF
导出
摘要 针对一类Markov跳变神经网络,研究了其在系统参数不确定情况下的全局鲁棒稳定性。利用Leibniz-Newton公式对原系统进行等价变换,基于Lyapunov稳定性理论,并结合Moon不等式得到了此类Markov跳变神经网络时滞相关均方鲁棒稳定性的判别条件。所得结果以线性矩阵不等式(linear matrix inequality,LMI)的形式给出,容易被Matlab中的LMI工具箱验证。最后,通过一个算例验证了所得结论的有效性。 The robust stability for a class of neural networks with Markov jumping parameters is investiga- ted. An equivalent transformation is made for the original system by the Leibniz-Newton formula. By applying Lyapunov stability theory and associating with Moon's inequality, the delay dependent robust stability condition for the Markov jumping neural networks is established. The results are given in the form of linear matrix inequality (LMI) and can be solved readily by the LMI tool box of Matlab. Finally, a numerical example is provided to illustrate the effectiveness of the theoretical results.
作者 盛立 杨慧中
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第11期2698-2702,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60674092)资助课题
关键词 神经网络 时滞相关鲁棒稳定性 LYAPUNOV泛函 MARKOV跳变 线性矩阵不等式 neural network delay-dependent robust stability Lyapunov functional Markov jumping linear matrix inequality
  • 相关文献

参考文献13

  • 1Gao M, Cui B. Robust exponential stability of interval Cohen-Grossberg neural networks with time-varylng delays[J]. Chaos Solitons and Fractals, 2009,40(14) : 1914 - 1928.
  • 2Cao J, Wang J. Global asymptotic stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Trans. on Circuits Systems Ⅰ, 2003,50(1 ) : 34 - 44.
  • 3Singh V. Global Robust stability of delayed neural networks: an LMI approach[J]. IEEE Trans. on Circuits Systems Ⅱ, 2005, 52(1): 33-36.
  • 4Xu S, Lam J, Ho DWC, et al. Improved global robust asymptotic stability criteria for delayed cellular neural networks[J]. IEEE Trans. on Systems, Man and Cybernetics, 2005, 35 (6): 1317 - 1321.
  • 5Zuo Z, Wang Y. Robust stability criterion for delayed cellular neural networks with norm-bounded uneertainties[J]. IET Control Theory and Application, 2007,1 (1) : 387 - 392.
  • 6Krasovskii N M, Lidskii E A. Analytical design of controllers in systems with random attributes [J]. Automation and Remote Control, 1961,22(1 - 3) :1021 - 2025.
  • 7Yue D, Han Q. Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching[J]. IEEE Trans. on Automatic Control, 2005,50(2) : 217- 222.
  • 8Gao M, Lou X, Cui B. Robust exponential stability of Markovian jumping neural networks with time-varying delay [J]. International Journal of Neural Systems, 2008, 18(3) : 207 - 218.
  • 9Wang Z D, Liu Y R, Yu L, et al. Exponential stability of delayed recurrent neural networks with Markovian jumping parameters [J]. Physics Letters A, 2006,356(4 - 5):346 - 352.
  • 10Lou X, Cui B. Delay-dependent stochastic stability of delayed Hopfield neural networks with Markovian jump parameters[J]. Journal of Mathematical Analysis and Applications, 2007, 328(1): 316 - 326.

同被引文献27

  • 1Krasovskii N N,Lidskii E A. Analytical design of controllerstion and Remote Control, 1961,22 (1/2/3) : 1021-1025,1141-1146,1289- 1294.
  • 2Boukas E K,Liu Z K. Robust control of discrete-timeMarkovian jump linear systems with mode-dependent time-delays[J]. IEEE Trans on Automatic Control’ 2001,46(12): 1918-1924.
  • 3Chen W H, Guan Z H,Yu P. Delay-dependent stability andcontrol of uncertain discrete-time Markovian jump systemswith mode-dependent time delays [J]. Systems ControlLetters, 2004’ 52(5): 361-376.
  • 4Wang H, Tian Y, Ce D,et al. Output regulation of the balland plate system with a nonlinear velocity observer [C] //Proc of the 7th World Congress on Intelligent Control andAutomation, Piscataway,IEEE, 2008: 2164- 2169.
  • 5Boukas E K,Liu Z. Robust control of discrete-time Mark-ovian jump linear systems with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control, 2001,46(12): 1918-1924.
  • 6Xu S Y, Chen T W,Lam J. Robust filtering for uncertainMarkovian jump systems with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control, 2003 , 48(5):900-907.
  • 7Zhang L, Boukas E K. Stability and stabilization of Markovjump linear systems with partly unknown transition probabil-ities [J]. Automatica, 2009, 45(2) : 463-468.
  • 8Zhang L, James Lam. Necessary and sufficient conditionsfor analysis and synthesis of Markov jump linear systemswith incomplete transition description [J]. IEEE Trans onAutomatic Control, 2010,55(7) : 1695-1700.
  • 9Dragan V,Morozan T. Stability and robust stabilization tolinear stochastic systems described by differential equationswith Markovian jumping and multiplicative white noise [J].Stochastic Analysis and Applications, 2002,20(1):33-92.
  • 10Kolmanovskii V B, Myshkis A. Applied theory of function-al differential equations [MJ. Dordrecht Kluwer: Springer,1992:82-114.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部