期刊文献+

时间序列方差模型样条估计的一致收敛速度 被引量:1

Uniform Rate of Convergence of Spline Estimator for Time Series Variance Models
下载PDF
导出
摘要 对于一类时间序列非参数方差模型,在强混合相依条件下,证明了非参数方差函数的多项式样条估计的一致相合性,得到了收敛速度. A kind of nonparametric variance models for time series is considered in this paper. Under strongly mixing dependent condition, uniform consistency of polynomial spline estimator of nonparametric variance function is proved. Also, the rate of convergence is obtained.
出处 《河南工程学院学报(自然科学版)》 2009年第3期71-73,共3页 Journal of Henan University of Engineering:Natural Science Edition
基金 河南省教育厅自然科学研究项目(2009A110005) 河南科技大学博士科研启动基金(09001322)
关键词 方差模型 非参数方法 样条 强混合 一致收敛 variance models nonparametric method spline strongly mixing uniform convergence
  • 相关文献

参考文献10

  • 1DAHL C M , LEVINE M. Nonparametric estimation of volatility models with serially dependent innovations [ J ]. Statistics & Probability Letters, 2006, 76 (18): 2 007 -2 016.
  • 2杨巍纳.非参数方差模型的样条估计[J].河南大学学报(自然科学版),2007,37(3):233-236. 被引量:6
  • 3DE BOOR C. A practical guide to splines [ M ]. NewYork : Springer - Verlag, 1978.
  • 4SCHUMAKER L L. Spline functions: basic theory [ M]. NewYork: Wiley, 1981.
  • 5BURMAN P. Regression function estimation from dependent observations [ J ]. Journal of Multivariate Analysis, 1991, 36(2): 263-279.
  • 6HUANG J Z, SHEN H. Functional coefficient regression models for nonlinear time series: A polynomial spline approach [ J ]. Scandinavian Journal of Statistics, 2004, 31 (4) : 515 -534.
  • 7XUE L, YANG L. Additive coefficient modeling via polynomial spline [J]. Sinica, 2006, 16(4): 1 423 - 1 446.
  • 8STONE C J. Optimal global rates of convergence for non- parametric regression [ J ]. The Annals of Statistics, 1982, 10 (4) : 1 040 - 1 053.
  • 9ROUSSAS G G, LOANNIDES D. Moment inequalities for mixing sequences of random variables [ J ]. Stochastic Analysis and Applications, 1987, 5 ( 1 ) :61 - 120.
  • 10武新乾.几类非参数时间序列模型的估计问题研究[D].西安:西北工业大学,2007.

二级参考文献10

  • 1Fan J,Yao Q.Efficient estimation of conditional variance functions in stochastic regression[J].Biometrika,1998,85:645-660.
  • 2Robinson P M.The approximate distribution of nonparametric regression estimates[J].Statistics & Probability Letters,1995,23:193-201.
  • 3Hardle W,Tsybakov A.Local polynomial estimators of the volatility function in nonparametric Autoregression[J].Journal of Econometrics,1997,81:223-242.
  • 4Laib N.Kernel estimates of the mean and the volatility functions in a nonlinear autoregressive model with ARCH errors[J].Journal of Statistical Planning and Inference,2005,134:116-139.
  • 5Huang J Z,Shen H.Functional coefficient regression models for nonlinear time series:A polynomial spline approach[J].Scandinavian Journal of Statistics,2004,31:515-534.
  • 6de Boor C.A Practical Guide to Splines[M].NewYork:Springer-Verlag,1978.
  • 7Burman P.Regression function estimation from dependent observations[J].Journal of Multivariate Analysis,1991,36:263-279.
  • 8Shi P.M-type regression splines involving time series[J].Journal of Statistical Planning and Inference,1997,61:17-37.
  • 9Stone C J.Optimal global rates of convergence for nonparametric regression[J].The Annals of Statistics,1982,10:1040-1053.
  • 10DeVore R A,Lorentz G G.Constructive Approximation[M].Berlin Heidelberg:Springer-Verlag,1993.

共引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部