期刊文献+

一种适用于高阶QAM信号的改进自恢复均衡算法 被引量:1

An amending self-recovering equalization algorithm for high-order QAM system
下载PDF
导出
摘要 本文通过对传统的常模算法进行改进和推广,提出了一种新的常模算法。该算法结合了常模算法优势,利用判决符号的指数幂构成的加权项调整代价函数的模值。在均衡器系数迭代的过程中,可以通过选择权系数,调整MSE的估计值,达到提高算法的稳态性能的目的。理论分析和仿真结果表明,对于高阶的QAM信号来说,在相同的条件下,与常规常模算法相比,提出的算法具有更快的收敛速度和更低的稳态残差;当载波频偏较大时,与多模算法相比,提出的算法仅仅均衡信号的能量,不影响其相位,因此,更适合后端的载波同步处理,得到更好的系统性能。 In this paper, a novel blind qualization algorithm is proposed by generating the conventional constant moduls algorithm. The proposed algorithm, which combines the benefits of the Constant modul algorithm, uses exponential weighted symbols of the decision output to adjust the modulus in the cost function. During the equalizer tab update process, the MSE can be adjusted so that superior performance of the proposed algorithm in steady-state can be obtained by selecting a the weight factor. Analysis and simulation results demonstrate that compared with conventional blind qualization algorithms, the proposed algorithm provides superior performace by increasing the convergence rate and decreasing the steady-state mean square error, which is more efficient for blind demodulation for high-order QAM signal. When there exist big frequency-offset, the proposed algorithm is more efficiency for carriery recovery because it equalizates only the energy of signal and do not affect the phase of signal.
出处 《信号处理》 CSCD 北大核心 2009年第12期1928-1931,共4页 Journal of Signal Processing
关键词 QAM信号 盲均衡 新的常模算法 QAM signal Blind equalization Novel CM algorithm
  • 相关文献

参考文献6

  • 1SatoY. M Method of self-recovering equalization for multi- level amplitude modulation system. IEEE trans. On Commun. 1975,23 (6) : 679-682.
  • 2Godad D. N. Self-recovering equalization and carrier tracking in two-demensional data communication systems IEEE trans, on Commun. , 1980,28( 11 ) :1867-1875.
  • 3Yang J, Werner J. J. et. al. The mutimodulus blind equalization and its generalized algorithm. IEEE, Journal on Sel. Areas in Commu. 2002, 20 ( 5 ) :997-1015.
  • 4Jenq-Tay Yuan, and Kun-Da Tsai, Analysis of the multimodulus blind equalization algorithm in QAM communication systems, IEEE trans. On Commu. 2005,53 ( 5 ) : 1427- 1431.
  • 5J. G. Proakis. Digital communications. McGrawHitl. Fourth, edition ,2001.
  • 6Qijia Liu and zhixing Yang, et. al. A novel QAM Joint frequency-phase carrier recovery method, ICACT2006, Feb. 20-22 pp 1617-1621.

同被引文献11

  • 1Adali T, Schreier P J, Scharf L L. Complex-valued sig- nal processing: the proper way to deal with impropriety [J]. IEEE Transactions on Signal Processing, 2011,59 (11) : 5101-5125.
  • 2Meng X, Liu Z, Jiang W. Widely-linear recursive adap- tive matching pursuit algorithm for adaptive beamforming [ C ]//In proceedings of IEEE 11th International Confer- ence on Signal Processing, 2012:290-293.
  • 3De Aquino F J A, da Rocha C A F, Resende L S. Accel- erating the convergence of the widely linear LMS algo- rithm for channel equalization [ C ]//International Tele- communications Symposium ( ITS2006 ), Fortaleza-CE, Brazil, vol. 1 : 57-61.
  • 4De Aquino F J A, Resende L S, da Rocha C A F. Wide-ly linear adaptive equalization of digital commumeation channel[ J J. IEEE Latin America Transanctions, 2010,8 ( 1 ) :30-37.
  • 5De Aquino F J A, da Rocha C A F, Resende L S. Wide- ly linear prediction for blind equalization[ C ]//IEEE ICC 2007 : 2985-2990.
  • 6Johnson R, Schniter P, Endres T J, et al. Blind equali- zation using the constant modulus criterion: a review [ J ]. In Proceedings of IEEE 1998,86( 10), 1927-1950.
  • 7Adali T, Li H, Aloysius R. On properties of the widely lin- ear MSE filter and its LMS implementation [ C ]//In Pro- ceedings of CISS 2009, Baltimore, MD, 2009:876-851.
  • 8Li X L, Adali T. Complex-valued Gaussian signal pro- cessing: optimality of MSE, incorporation of full statis- tics, and a unified view [ C ] //In Proceedings of CISS 2011, Baltimore, MD,2011:1-5.
  • 9Neto F G A, Nascimento V H, Silva M T M. Reduced- complexity widely linear adaptive estimation[ C]//In Pro- ceedings of ICWCS 2010: 399-403.
  • 10Chen Y, Le-Ngoc T, Champagne B, Xu C. Recursive least squares modulus algorithm for blind adaptive array [ J]. IEEE Transactions on Signal processing, 2004, 52 (5) : 1452-1456.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部