摘要
假设(X,.)为可分的Banach空间,X*为其对偶空间,X*可分.设(Ω,F,P)为完备的概率空间,{An,n≥1}为F的上升子σ-域族,且A∞=∨n≥1An.在X*可分的条件下讨论了集值Pramart的一些性质,并研究了集值Pramart诱导的集值测度及其性质.
Let(X‖·‖) be a real separable Banach space with the dual X^*,and(Ω,F,P) an complete probability space,further,{An,n≥1} a increase sub σ-fields filtration of F,as well as A∞=∨n≥1An,the properties of set-valued Pramart,and set-valued measures induced by set-valued Pramart are discussed.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2009年第6期1121-1124,共4页
Journal of Jilin University:Science Edition
基金
陕西省自然科学基金(批准号:SJ08A28)
关键词
集值PRAMART
集值鞅
集值测度
set-valued Pramart
set-valued martangle
set-valued measures