期刊文献+

从L^p(R_+~n,ω(x))到L^p(R_+~m)的Hardy型奇异积分算子的(p,p)型范数 被引量:2

On the(p,p) Type Norm of Hardy's Type Singular Integral Operator from L^p(R_+~n,ω(x)) to L^p(R_+~m)
下载PDF
导出
摘要 设‖x‖λ=(x1λ+xλ2+…+xλn)1/λ(x∈Rn+),ω(x)是非负可测函数,定义带参数r的从Lp(Rn+,ω(x))到Lp(Rm+)的Hardy型奇异积分算子Tr:Tr(f)(y)=‖y‖1λr∫xλ≤yλf(x)dx,x∈Rn+,y∈Rm+.利用权函数方法,讨论了Tr的(p,p)型范数,并得到其范数的参数表达式. Suppose ‖x‖λ=(x1^λ+x2^λ+…+xn^λ)^1/λ(x∈Rn^+),ω(x)≥0 is a measurable function,Hardy s type singular integral operator Tr with parameter r from L^p(R+^n,ω(x)toL^p(R+^m)is defined as Tr(f)(y)=1/‖y‖λ^r∫‖x‖λ≤‖y‖λf(x)dx,x∈Rn^+,y∈Rm^+ type norm of operator Tr is obtained by estimating the weight function.
作者 洪勇
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1130-1134,共5页 Journal of Jilin University:Science Edition
基金 广东省自然科学基金(批准号:06301003)
关键词 Hardy型奇异积分算子 (p p)型范数 Γ函数 Hardy s type singular integral operator (p p) type norm Γ-function
  • 相关文献

参考文献7

二级参考文献18

  • 1Hardy G. H., Littewood J. E. and Polya G., Inequalities, London: Cambridge University Press, 1952.
  • 2Wedestig A., Some new Hardy type inequalities and their limiting inequalities, Journal of Inequalities in Pure and Applied Mathematics, 2003, 4(3): Article 61.
  • 3Mitrinovic D. S., Pecaric J. E. and Fink A. M., Inequalities involving functions and their integrals and deriwtives, Boston: Kluwer Academic Publishers, 1991.
  • 4Kuang J. C., Applied inequalities (3nd ed), Jinan: Shandong Science and Technology Press, 2004 (in Chinese).
  • 5Yang B. C., Themistocles M. R., On the way of weight coefficient and research for the Hilbert-type inequalties,Math. Ineq. Appl., 2003, 6(4): 625-658.
  • 6Hu K., Some problems of analytici inequalities, Wuhan; Wuhan University Press, 2003 (in Chinese).
  • 7Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge: Cambridge University Press, 1952
  • 8Yang B., Debnath L., On the extended Hardy-Hilbert's type inequality, J. Math. Anal. Appl., 2002, 272: 187-199.
  • 9Yang B. C., On Hilbert's type inequality with some paraneters, Acta Mathematica Sinica, Chinese Series, 2006, 49(5): 1122-1126.
  • 10Hu K., On Hilbert's type inequality, Chinese Ann. Math., 1992, 13B(2): 35-39

共引文献96

同被引文献13

  • 1洪勇.涉及多个函数的Hardy型积分不等式[J].数学学报(中文版),2006,49(1):39-44. 被引量:11
  • 2Azar L E. On Some Extensions of Hardy-Hilbert's Inequality and Application [J/OL]. J Ineq Appl, 2008, doi: 10. 1155/2008/546829.
  • 3Hardy G H, Littlewood J E, Polya G. Inequalities [M]. Cambridge: Cambridge University Press, 1952.
  • 4胡克.解析不等式的若干问题[M].武汉:武汉大学出版社,2004.
  • 5Hardy G H,Littlewood J E,Polya G. Inequalities[M].{H}Cambridge:Cambridge University Press,1952.
  • 6匡继昌.常用不等式[M]{H}济南:山东科学技术出版社,2004.
  • 7杨必成.算子范数与Hilbert型不等式[M]{H}北京:科学出版社,2009.
  • 8黄启亮.一个Hilbert型不等式及其等价形式的加强[J]{H}数学杂志,2008(4):21-25.
  • 9胡克.解析不等式的若干问题[M]{H}武汉:武汉大学出版社,2004.
  • 10黄启亮.一个Hilbert型不等式及其等价形式的加强推广[J].数学杂志,2010,30(3):503-508. 被引量:3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部