摘要
设‖x‖λ=(x1λ+xλ2+…+xλn)1/λ(x∈Rn+),ω(x)是非负可测函数,定义带参数r的从Lp(Rn+,ω(x))到Lp(Rm+)的Hardy型奇异积分算子Tr:Tr(f)(y)=‖y‖1λr∫xλ≤yλf(x)dx,x∈Rn+,y∈Rm+.利用权函数方法,讨论了Tr的(p,p)型范数,并得到其范数的参数表达式.
Suppose ‖x‖λ=(x1^λ+x2^λ+…+xn^λ)^1/λ(x∈Rn^+),ω(x)≥0 is a measurable function,Hardy s type singular integral operator Tr with parameter r from L^p(R+^n,ω(x)toL^p(R+^m)is defined as
Tr(f)(y)=1/‖y‖λ^r∫‖x‖λ≤‖y‖λf(x)dx,x∈Rn^+,y∈Rm^+ type norm of operator Tr is obtained by estimating the weight function.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2009年第6期1130-1134,共5页
Journal of Jilin University:Science Edition
基金
广东省自然科学基金(批准号:06301003)