摘要
利用Leray-Schauder不动点定理证明一类具浓度相关迁移率和梯度相关位势的一维Cahn-H illiard方程古典解的存在性,并利用共轭法证明了相应问题解的惟一性.在一维情形下推广了已有的关于具常迁移率和梯度相关位势的Cahn-H illiard方程初边值问题的结果.
We used the Leray-Schauder fixed point theorem to prove the existence of the classical solutions of the initial boundary value problem of one dimensional Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential,and showed the uniqueness of the solutions by means of Holmgren s approach.In the case of one dimension,we generalized our previous work on the corresponding problem of the Cahn-Hilliard equation with constant mobility and gradient dependent potential.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2009年第6期1140-1144,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10826041J0630104)
教育部博士学科点专项科研基金(批准号:200801831002)