期刊文献+

具有Hermite插值性质的可加细函数向量 被引量:1

Refinable Function Vectors with Hermite Interpolating Property
下载PDF
导出
摘要 通过引入Hermite插值条件,给出一个全新的具有Hermite插值性质的可加细函数向量,即Hermite插值型可加细函数向量,并结合相应的Hermite插值型尺度滤波器,刻画了Hermite插值型可加细函数向量的性质. With introducing Hermite interpolating condition,the authors presented a novel notion of Hermite interpolating refinable function vector.In terms of its mask,several properties with respect to Hermite interpolating refinable function vector were investigated.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1155-1159,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60673021) 辽宁省教育厅科研基金(批准号:2008Z018)
关键词 可加细函数向量 Hermite插值条件 尺度滤波器 refinable function vector Hermite interpolating condition mask
  • 相关文献

参考文献8

  • 1Koch K. Interpolating Scaling Vectors [ J ]. Int J Wavelets Multiresolut Info Process, 2005, 3 (3) : 389-416.
  • 2Selesnick I W. Interpolating Muhiwavelet Bases and the Sampling Theorem [J]. IEEE Trans on Signal Process, 1999, 47(6) : 1615-1621.
  • 3ZHOU Ding-xuan. Interpolatory Orthogonal Muhiwavelets and Refinable Functions [ J ]. IEEE Trans on Signal Process, 2002, 50(3) : 520-527.
  • 4Conti C, Cotronei M, Sauer T. Full Rank Interpolatory Subdivision Schemes: Kronecker, Filters and Muhiresolution [J]. J Comput Appl Math, 2009, 225: 219-239.
  • 5HAN Bin, Kwon S G, ZHUANG Xiao-sheng. Generalized Interpolating Refinable Function Vectors [ J]. J Comput Appl Math, 2009, 227 (2) : 254-270.
  • 6HAN Bin. Vector Cascade Algorithms and Refinable Function Vectors in Sobolev Spaces [ J ]. J Approx Theory, 2003, 124( 1 ) : 44-88.
  • 7Koch K. Multivariate Orthonormal Interpolating Scaling Vectors [ J]. Appl Comput Harmon Anal, 2007, 22(2): 198-216.
  • 8JIANG Qing-tang, Oswald P, Riemenschneider S D. √3--Subdivision Schemes: Maximal Sum Rule Orders [ J ]. Constru Approx, 2003, 19(3) : 437-463.

同被引文献7

  • 1Selesnick I W. Interpolating Multiwavelet Bases and the Sampling Theorem [ J]. IEEE Trans on Signal Process, 1999, 47(6) : 1615-1621.
  • 2HAN Bin. Vector Cascade Algorithms and Refinable Function Vectors in Sobolev Spaces[J]. J Approx Theory, 2003, 124( 1 ) : 44-88.
  • 3HAN Bin, Kwon S G, ZHUANG Xiao-sheng. Generalized Interpolating Refinable Function Vectors [ J]. J Comput Appl Math, 2009, 227 (2) : 254-270.
  • 4Koch K. Multivariate Orthonormal Interpolating Scaling Vectors [ J]. Appl Comput Harmon Anal, 2007, 22: 198-216.
  • 5Conti C, Cotronei M, Sauer T. Full Rank Interpolatory Subdivision Schemes: Kronecker, Filters and Multiresolution [J]. J Comput Appl Math, 2010, 233(7) : 1649-1659.
  • 6Koch K. Interpolating Scaling Vectors [ J]. Int J Wavelets Multiresolut Info Process, 2005, 3: 389-416.
  • 7ZHOU Ding-xuan. Interpolatory Orthogonal Multiwavelets and Refinable Functions [J], IEEE Trans on Signal Process, 2002, 50(3): 520-527.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部