期刊文献+

手写数字识别中组合式神经网络的构建方法 被引量:11

Approach for Constructing Neural Network Ensemble Applied to Handwritten Digit Recognition
下载PDF
导出
摘要 将聚类技术和遗传算法相结合,提出一种基于相似度传播算法和遗传算法的神经网络集成方法应用于手写数字识别问题.先分别利用主成分分析和Fisher线性判别分析对数据集进行特征提取,得到两类特征数据集,再利用Bagging方法分别为这两类特征数据集训练简单的BP神经网络,然后采用相似度传播算法对这些BP神经网络进行聚类,找到作为类簇中心的网络(中心网络),最后利用遗传算法对所有中心网络的权值进行训练,将中心网络进行加权线性集成作为最终分类器.在标准手写数字数据集MNIST上进行测试的实验结果表明,该方法的识别率优于单个神经网络的识别率,并兼顾了分类效率. The authors proposed a method for constructing neural network ensemble based on affinity propagation and genetic algorithm, which can be applied to handwritten digit recognition. Firstly, we extracted features of samples from the MNIST handwritten digit database by PCA ( Principle Component Analysis) and Fisher LDA (Linear Discriminant Analysis) respectively. Secondly, we adopted the bagging method to train some BP neural networks as candidate networks using the extracted PCA and LDA feature sets. Thirdly, affinity propagation algorithm was used to group candidate networks and find exemplars in each cluster. Finally, we optimized these weights for exemplars using genetic algorithm and integrate exemplars with the optimized weights to obtain the final classifier. Experimental results on the MNIST handwritten digit database prove that the accuracy of the algorithm proposed in this paper is far higher than that of individual network while its efficiency is acceptable.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1211-1216,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:6067309960873146) 国家高技术研究发展计划863项目基金(批准号:2007AA04Z114) 吉林省科技发展计划项目基金(批准号:20080168)
关键词 人工神经网络 手写数字识别 神经网络集成 artificial neural network handwritten digit recognition neural network ensemble
  • 相关文献

参考文献20

  • 1Cun Y L, Boscr B, Denker J, et al. Handwritten Digit Recognition with a Back-propagalion Network [ C ]//Advances in Neural Information Processing Systems 2. [ S. l. ] : Morgan Kaufmann Press, 1990: 396-404.
  • 2Cun Y L, Bottou L, Bengio Y. Gradient-based Learning Applied to Document Recognition [ J ]. Proceedings of the IEEE, 1998, 86( 11 ) : 2278-2324.
  • 3SHEN Dong-sheng, JIN Lian-wen, MA Xiao-bin. FPGA Implementation of Feature Extraction and Neural Network Classifier for Handwritten Digit Recognition [ J]. Lecture Notes in Computer Science, 2004, 3173: 958-995.
  • 4Laurence L S, Marc S. Recognition of Degraded Handwritten Digits Using Dynamic Bayesian Networks [ J ]. Document Recognition and Retrieval XIV, 2007,6500( 1 ) : 65000G.
  • 5ZHANG Ping, Bui T D, Suen C Y. A Novel Cascade Ensemble Classifier System with a High Recognition Performance on Handwritten Digits [J]. Pattern Recognition, 2007, 40(12) : 3415-3429.
  • 6Javed I, Ayyaz M N, Mehmood W. Efficient Training Data Reduction for SVM Based Handwritten Digits Recognition [ C ]//Proceedings of International Conference on Electrical Engineering. Lahore: Pakistan, 2007: 425-428.
  • 7Hansen L K, Salamon P. Neural Network Ensembles [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 8Sollich P, Krogh A. Learning with Ensembles: How Over-fitting Can Be Useful [ C ]//Advances in Neural Information Processing Systems 8. Cambridge : MIT Press, 1996 : 190-196.
  • 9ZHOU Zhi-hua, WU Jian-xin, JIANG Yuan, et al. Genetic Algorithm Based Selective Neural Network Ensemble [ C ]// Proceedings of the 17th International Joint Conference on Artificial Intelligence. Seattle : [ s. n. ] , 2001 : 797-802.
  • 10Chen H, Yuan S, Jiang K. Selective Neural Network Ensemble Based on Clustering [ J ]. Lecture Notes in Computer Science, 2006, 3971: 545-550.

同被引文献73

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部