期刊文献+

声长对小鼠下丘神经元声强反应关系的影响 被引量:1

The Efect of Sund Dration on the Rpresentation of Aoustic Aplitude in the Muse Iferior Clliculus
下载PDF
导出
摘要 目的:探讨声长(sound duration)对听神经元声音强度反应关系的影响。方法:采用在体细胞外记录方法,通过给予双耳不同声长和声强的特征频率(characteristic frequency,CF)短纯音刺激,记录4-6周BALB/c小鼠下丘神经元听反应,并分别以动作电位发放数(spike counts,SC)和第一发放延时(first spike latency,FSL)为评价指标,分析比较声长对神经元的声强反应关系的影响。结果:共记录到35个神经元反应。以发放数为评价指标,这些神经元分别表现出34%单调、26%饱和、40%非单调3种声强反应。较之发放数,FSL能更好地反映声强和声强变化,并展示出同一规律的FSL-声强反应曲线:FSL随着声强的增大而缩短。在不同声长下,所有神经元发放数-声强曲线和FSL-声强曲线基本重合,但后者变异性小。结论:声长对小鼠下丘神经元强度反应关系无明显影响;相比发放数,FSL则能更准确地反映声强和声强变化。 Objective. To explore the effect of the sound duration on the neuronal responses to the amplitudes. Methods. In 4 to 6 weeks BALB/c mice, we employed extracellular recording technique on their central nuclei of inferior colliculus. In this study, spike counts (SC) and first spike latency (FSL) were both used to evaluate the responses of neurons to the binaural acoustic stimuli which were varied with duration and amplitude at the neuronal characteristic frequency. Results: A total of 35 single neurons were recorded. The SC-mplitude functions across a population of auditory neurons are classified as the monotonic (34%), saturated (26 %), and non-onotonic (40 %). For each type neuron, the iso-duration SC-amplitude functions demonstrated similar shape with wide variation. In contrast to SC, FSL decreases monotonically with the amplitude increasing. The iso-duration FSL-amplitude functions of a recorded neuron overlapped. Conclusion: Sound duration has no effect on the representation of acoustic amplitude; In contrast to SC, FSL can precisely reflect the response to acoustic amplitude and its variation.
出处 《数理医药学杂志》 2009年第6期656-659,共4页 Journal of Mathematical Medicine
基金 国家自然科学基金项目(30670665 30730039 30570571)
关键词 第一发放延时 声长 小鼠 下丘 first spike latency sound duration inferior colliculus mouse
  • 相关文献

参考文献16

  • 1Suga N. Amplitude spectrum representation in the Doppler-shifted- CF processing area of the auditory cortex of the mustache bat. Science, 1977, 196(4285) :64-67.
  • 2Wu M, Jen PH. Encoding of acoustic stimulus intensity by inferior collicular neurons of the big brown bat, Eptesicus fuscus. Chin J Physiol, 1991, 34(2) : 145-155.
  • 3Grothe B. Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J Neurophysiol, 1994, 71 (2) : 706-721.
  • 4Tan X. , Wang X. , Yang W, et al. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice. Hear Res, 2008, 235(1-2): 90-104.
  • 5Furukawa S, Middlebrooks JC.Sensitivity of auditory cortical neurons to locations of signals and competing noise sources. J Neurophysiol, 2001, 86(1) :226-240.
  • 6Nelken I, Chechik G, Mrsic-Flogel TD, et al. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. J Comput Neurosci, 2005, 19(2) : 199-221.
  • 7Neubauer H, Heil P. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers. Brain Res, 2008, 1220:208-223.
  • 8Reich DS, Mechler F, Victor JD. Temporal coding of contrast in primary visual certex: when, what, and why. J Neurophysiol, 2001, 85(3) : 1039-1050.
  • 9Panzeri S, Petersen RS, Schultz SR, et al. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 2001, 29(3) :769-777.
  • 10Petersen RS, Panzeri S, Diamond ME. Population coding of stimulus location in rat somatosensory cortex. Neuron, 2001, 32 (3): 503-514.

同被引文献17

  • 1邱强,唐杰,余祖林,张娟,周英杰,肖中举,沈钧贤.小鼠下丘听神经元的反应潜伏期对特征频率的表达[J].中国科学(C辑),2007,37(2):190-197. 被引量:4
  • 2Heil, P. First spike latency of auditory neurons revisited. Review. Curr. Opin. Neurobiol. 2004. 14(4)461-467.
  • 3VanRullen R, Guyonneau R, Thorpe, S. J. Spike times make sense. Trends. Neurosci. 2005,28 (1) : 1-4.
  • 4Tan X, Wang X, Yang W, et al. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice. Hear Res, 2008,235(1- 2)90-104.
  • 5Paul G. Finlayson,James A. Kaltenbach. Alterations in the sponta neous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hearing Res, 2009, 256- 1044117.
  • 6Eggermont, J. J,Mossop,J. E. Azimuth coding in primary auditory cortex of the cat. I. Spike synchrony versus spike count represen tation . J Neurophysiology. 1998,80(4) 2133-2150.
  • 7Furukawa,S,Middlebrooks,J. C. Cortical representation of audito ry space: information-bearing features of spike patterns. J. Neurophysiol,2002,87(4)1749-1762.
  • 8Aikin, L. Rate-level functions of neurons in the inferior colliculus of cats measured with the use of free-field sound stimuli. J. Neurophysiol, 1991,65 - 383-392.
  • 9Suga, N. Amplitude spectrum representation in the Doppler-shifted CF processing area.of the auditory cortex of the mustache, bat. Science. 1977,196 (4285) : 64-67.
  • 10Sutter,M. L. Schreiner,C. E. Topography of intensity tuning in cat primary auditory cortex: single--neuron versus multiple-neuron recordings. J. Neurophysiol. 1995,73(1) : 190-204.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部