摘要
本文提出一类基于高斯基神经网络的自学习控制器,该控制器由两个GPFN网络组成,一个完成PID学习控制,另一个完成未知被控对象模型的建模.为加快网络的学习过程,文中提出了递归最小二乘法(RLS)用于神经网络的学习,并分析研究了自学习控制系统的收敛性和稳定性.仿真和实验结果表明,这类智能控制是成功的.
This paper presents a new self-learning controller based on Gaussian potential function neural networks. The controller consists of a control network and model network. In order to speed up learning rate, a general least squares approach for neural network learning is proposed. Convergence and stability of this self-learning system is proved. Simulation results have shown that the new controller can be successfully applied in nonliner control systems.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
1998年第5期701-707,共7页
Control Theory & Applications
基金
国家963/CIMS基础研究基金!9845-002