期刊文献+

高阶Hopfield神经网求解合取范式可满足性问题 被引量:2

HIGH-ORDER HOPFIELD NETWORK FOR SAT
下载PDF
导出
摘要 本文提出用高阶Hopfield神经网络求解SAT问题,给出了连续及离散高阶神经网络模型与相应的离散快速求解算法,证明了网络的稳定性.并用实验证明了该方法的可行性,且将该算法与LocalSearch算法进行了比较. The CNFSAT Problem is an NP-Comlete Problem. Inengineering mnyappications can be mapped into SAT Problems. So designing a fast and efficientalgorithm for solving SAT probems is valuabe. The Hopeld netWork as a classicalneural network has been widely appied in the optindzation field.In thes paper,anew mpthod tha appies the highother Hopeld neuIal network to solve the SAT problem is Presented and the thought how to map the SAT Problem into the Hopfieldnetwork is discussed in detail. The definihon of the networks. enerpy hahon isgiven and the networks' constructing method (including continuous and discretemodl) are presented. This paper also proves the networks' stahility and discussesthe strategies about how to escape from local minimal points in the network. Final-ly simulating experiments in which the discrete Hop field network is adopted aredone to solve the 3-SAT problem and their results compared with the classical localsearch algorithm are presented. It proves that the algorithm is fast and efficient,especially the number of searching is decreased prominently.
作者 丁宇新 程虎
出处 《计算机学报》 EI CSCD 北大核心 1998年第10期914-920,共7页 Chinese Journal of Computers
关键词 神经网络 梯度下降 合取范式 NP完全问题 Neural network, gradient descent, conjunctive normal form
  • 相关文献

参考文献3

  • 1李未,中国科学.A,1994年,24卷,11期,1208页
  • 2Gu J,IEEE Trans Syst Man Cybern,1993年,23卷,4期,1108页
  • 3焦李成,神经网络计算,1993年

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部