期刊文献+

改进填充函数法求解一类非线性规划全局极小点

A modified filled function method for finding a global minimizer of a nonlinear programming
下载PDF
导出
摘要 针对带约束的非线性规划问题,构造了求解这一类优化问题的改进单参数填充函数,给出了相应的算法。理论分析和数值试验表明:构造的填充函数对参数依赖性小,全局收敛速度快。该方法对解决带约束的非线性全局优化问题是行之有效的。 A filled function method for solving nonlinear programming global optimization problems is proposed. The new filled function has one adjustable parameter. Analyses and numerical results show that the constructing filled function makes the algorithm converge more rapidly and rely little on the parameter. The new method is better than the existing filled function method reported in the references.
出处 《西安科技大学学报》 CAS 北大核心 2009年第6期775-778,共4页 Journal of Xi’an University of Science and Technology
基金 国家自然科学基金项目(50674075) 陕西省教育厅科研专项(08JK366) 陕西省自然科学基金项目(S2009JC1974)
关键词 填充函数 约束条件 全局极小点 全局优化 filled function constrained global minimizer global optimization
  • 相关文献

参考文献7

  • 1Barhen J, Protoporescu V, Trust D R. A deterministic algorithm for global optimization[ J ]. Science, 1997,276:1 094 - 1 097.
  • 2GE Ren-pu. The theory of the filled function method for finding a global minimizer of a nonlinear constraints problem [ J ]. Journal of Computational Mathematics, 1987,5 ( 1 ) : 1 - 9.
  • 3余长君,姚奕荣,张连生.在全空间上求全局最优解的填充函数方法[J].运筹学学报,2007,11(2):107-112. 被引量:4
  • 4LIU X. Several filled functions with mitigators[ J]. Applied Mathematics and Computing ,2002,133:375 -387.
  • 5WANG Lian-xiang, ZHOU Guang-bin. A new filled function for unconstrained global optimization [ J ]. Applied Mathematics and Computation ,2006,174:419 - 429.
  • 6王雪峰.一种求解分类问题的优化算法[J].西安科技大学学报,2008,28(4):816-819. 被引量:3
  • 7ZHU Wei-xin. A class of filled functions for box constrained continuous global optimization[ J ]. J. Glob. Optim,2005,169: 129 - 145.

二级参考文献22

  • 1王雪峰.一类无约束不可微规划算法[J].西安科技学院学报,2001,21(4):402-404. 被引量:1
  • 2Mangasarian O L. Linear and nonlinear separation of patterns by linear programming[ J]. Operation Research, 1965,13:444.
  • 3Mangasarian O L. Multi-surface method of pattern separation[ J]. IEEE Transaction on Information Theory, 1968, IT - 14:801.
  • 4Cortes C, Vapnik V . Support vector networks [ J ]. Machine Learning, 1995,20:273 - 297.
  • 5Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernelbased learning methods[ M ]. Cambridge : Cambridge University Press ,2000.
  • 6Vapnik V. Statistical learning theory[ M ]. Ne York : Wiley, 1998.
  • 7Burges C J C. A tutorial on support vector machines for pattern recognition[ J]. Data mining Knowledge Discovery, 1995,22 (2) : 121 - 167.
  • 8Clarke F H. Nonsmooth analysis and optimization[ M]. New York :Wiley, 1953.
  • 9Barhen J.,Protopopescu V.,Reister D.TRUST:A Deterministic Algorithm for Global Optimization[J].Science,1977,276:1094-1097.
  • 10Beck A.,Teboulle M.Globle Conditions for Optimization Problems with Binary Constraints[J].SIAM Journal on Optimization,2000,11:179-188.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部