期刊文献+

内p-群与外p-群的结构和性质

Finite groups with many subgroups of prime power order
下载PDF
导出
摘要 本文以p-群和内∑-群研究成果为基础,以它们的研究方法为依托,采用反证法、分析法,得到若干成果,丰富了研究内∑-群这一领域的成果.文章首先以可解次单群的结构和性质,来引出文章所讨论的任一真子群为素数方幂阶的有限群的结构和性质,给出来一个有限群满足这一性质的充分必要条件,得到了若干结论,并且指出了任一真子群为素数方幂阶的有限群和有限次单群、CP-群之间的包含关系.最后,进一步拓宽这一性质,引出外p-群的定义,给出了一个外p-群的必要条件. This paper studies the results based on p-groups and inner ∑_ groups. The methods applied in the study of this paper include reversed proof, analysis proof. Firstly it uses the quality and structure of the sub-simplegroups, then introduces the quality and structure of the finite groups with many subgroups of prime power order and necessary and sufficient condition. It also points out the relation of the finite groups with many subgroups of prime power order, sub-simplegroups, CP- groups. In the end, the paper gives the external p- groups and the condition of this groups.
作者 张科锋
出处 《西南民族大学学报(自然科学版)》 CAS 2009年第6期1125-1129,共5页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 次单群 P-群 内P-群 IP-群 sub-simple group p-groups inner p-group IP-group
  • 相关文献

参考文献10

  • 1徐明曜.有限群导引[M].2版.北京:科学出版社,2007:16-48.
  • 2熊全淹.近世代数[M].武汉:武汉大学出版社,2004:38-39.
  • 3GORENSTEIN D. Finite simple groups: an introduction to their classification[M]. New York Plenum Press, 1982.
  • 4HUPPERT B. Endlieh gruppen I[M]. Berlian Heidelberg New York: Springer-Verlag, 1979: 618-753.
  • 5HUPPERT B, BLACKBURN N. Finite groups III[M]. Berlian Heidelberg New York: Springer-Verlag, 1982: 182-194.
  • 6CONWAY J H, NORTON S P, PARKER R A, WILSON R A. Atlas of finite groups [M]. Oxford and New York: Ordord University Press(Clarendon), 1985.
  • 7YANG W, ZHANG Z. Locally soluble infinite groups in which every element has prime power order[J]. Southeast Asian Bulletin of Mathematics, 2003, 26: 857-64.
  • 8陈重穆.内∑群.数学学报,1980,23(2):239-242.
  • 9钱国华.具有很多素数阶元的有限群[J].数学杂志,2005,25(1):115-118. 被引量:4
  • 10施武杰 杨文泽.A5的一个新刻划与有限质元群.西南师范大学学报,1984,8(1):36-40.

二级参考文献8

  • 1Higman G. Finite groups in which every element has prime power order[J]. J London Math Soc,1957,32:335-342.
  • 2施武杰 杨文泽.A5的一个新刻划与有限质元群.西南师范大学学报,1984,8(1):36-40.
  • 3Shi Wujie, Deng Huiwen, Zhang Jian. Finite nonsolvable groups with few composite numbers in the set of element orders[J]. J Southwest China Normal University,2001,26(5):493-502.
  • 4Isaacs I M. Character theory of finite groups[M]. New York: Academic Press,1976,14-95.
  • 5Gorenstein D. Finite simple groups, an introduction to their classification[M]. New York, Plenum Press, 1982,18-307.
  • 6Huppert B. Endlich gruppen I [M]. Berlian Heidelberg New York: Springer-Verlag,1979,618-753.
  • 7Huppert B, Blackburn N. Finite groups Ⅲ [M]. Berlian Heidelberg New York:Springer-Verlag,1982,182-194.
  • 8Conway J H, Norton S P, Parker R A, Wilson R A. Atlas of finite groups[M]. Oxford and New York:Oxford University Press(Clarendon), 1985,1-100.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部