期刊文献+

超声粒子图像测速技术及应用 被引量:7

Echo particle image velocimetry technique and its applications
下载PDF
导出
摘要 心血管疾病的产生与动脉血流的流动状况密切相关。然而,目前普遍应用的超声多普勒成像技术不能精确测量复杂血流流场信息。本文提出了一种基于超声造影微泡的超声全流场粒子图像测速技术,能够获得多维流速速度信息,且不依赖于声束与速度向量之间的夹角。本文首先着重阐述了超声全流场粒子测速技术的基本原理以及系统组成,并对直管流和旋转流场流体动力学特性进行了实验测试研究,实验结果表明本技术能够测量全流场速度,并可作为表征复杂血流流场的有力手段。 Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. However, current ultrasound/Doppler imaging techniques cannot resolve the complex nature of arterial blood flow. We have recently developed a novel contrast-based echo particle imaging technique (Echo PIV) without angel dependence for noninvasive measuring multi-component flow vectors. Here we introduce the Echo PIV principles, system characterization and utility examination for characterizing hemodynamics in laminar flow and rotating flow. Echo PIV measurement results show its capability to resolve the complex hemodynamics including proximal flow velocity vectors, and velocity mapping. The Echo PIV method provides an easy, direct and accurate means of quantitatively yet noninvasively characterizing the complex vascular hemodynamics.
出处 《声学学报》 EI CSCD 北大核心 2009年第6期548-553,共6页 Acta Acustica
基金 国家重点基础研究973计划项目资助(2010CB732600) 深港创新园和深圳市基础研究计划项目资助
关键词 粒子图像测速技术 超声多普勒 应用 流体动力学特性 精确测量 速度信息 实验测试 心血管疾病 Flow visualization Hemodynamics Hydrodynamics Imaging techniques Laminar flow Velocity measurement
  • 相关文献

参考文献16

  • 1Friedman M H, Deters O J, Bargeron C B et al. ShearDependent Thickening of the Human Arterial Intima. Atherosclerosis, 1986; 60(2): 161-171.
  • 2Shaaban A M, Duerinckx A J. Wall shear stress and early atherosclerosis: A review. American Journal of Roentgenology, 2000; 174(6): 1657-1665.
  • 3Jiang Y N, Kohara K, Hiwada K. Association between risk factors for atherosclerosis and mechanical forces in carotid artery. Stroke, 2000; 31(10): 2319-2324.
  • 4施仲伟,沈蓓蓓,沈戈,林淑英,龚兰生.老年患者颈动脉粥样硬化的发生率及危险因素[J].中华内科杂志,1996,35(1):25-27. 被引量:42
  • 5Oshinski J N, Ku D N, Mukundan Set al. Determination of wall shear stress in the aorta with the use of MR phase velocity mapping. Jmri-J Magn Reson Inn, 1995; 5(6): 640-647.
  • 6Benetos A, Simon A, Levenson Jet al. Pulsed Doppler: an evaluation of diameter, blood velocity and blood flow of the common carotid artery in patients with isolated unilateral stenosis of the internal carotid artery. Stroke, 1985; 16(6): 969-972.
  • 7Sandrin L, Manneville S, Fink M. Ultrafast two- dimensional ultrasonic speckle velocimetry: A tool in flow imaging. Appl Phys Lett, 2001; 78(8): 1155-1157.
  • 8Gramiak R, Shah P M, Kramer D H. Ultrasound cardiography: contrast studies in anatomy and function. Radiology, 1969; 92(5): 939-948.
  • 9Sander M. van der Meer, Benjamin Dollet, Marco M. Voormolen et al. Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 2007; 121(1): 648-656.
  • 10李彬,万明习,王素品.纳米包膜造影微泡在脉冲超声场中的瞬态非线性特性研究[J].声学学报,2004,29(6):525-532. 被引量:11

二级参考文献24

  • 1Gramiak R, Shah P M. Echocardiography of the aortic root. Invest Radiol 1968(3): 356-366.
  • 2Simpson D H, Chin C T, Burns P N. Pulse inversion Doppler: a new method for detecting nonlinear echoes frommicro bubble contrast agents. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 1999; 46(2): 372-382.
  • 3Frinking P J A, Cespedes E I, De Jong N. Multi-pulse ultrasound contrast imaging based on a decorrelation detection strategy. IEEE Ultrasonics Syrup., Sendal, 1998.
  • 4De Jong N, Cornet R, Lancee C T. Higher harmonics of vibrating gas filled microspheres: Part one. Simulations.Ultrasonics, 1994a; 32(6): 447-453.
  • 5De Jong N, Cornet R, Lancee C T. Higher harmonics of vibrating gas filled microspheres: Part two. Measurements Ultrasonics, 1994b; 32(6): 455-459.
  • 6Shi W T, Forsberg F, Raichlen J S, Needleman L, Goldberg B B. Pressure dependence of subharmonic signals from contrast microbubbles. Ultrasound Med. Biol., 1999; 25(2):275-283.
  • 7Bouakaz A, Frigstad S, Folkert J, Cate T, De Jong. Super harmonic imaging: A new imaging technique for improved contrast detection. Ultrasound Med. Biol., 2002; 28(1):59-68.
  • 8Daubechies I. Ten lectures on wavelets. SIAM, philadephia, 1992.
  • 9Samar V J, Kulkarni G, Swartz K P, Parasnis I, Raghuveer M R, Udpikar V. Concise and scale-specific extraction of biomedically relevant information from visual evoked potential signals: Combining factor analysis with wavelet decomposition. In: Laine AF, Unser MA, Ed. Wavelet applications in signal and image processing: Ⅱ. Proceedings of the Society for Photo Instrumentation Engineering 1994;2303:496-507.
  • 10Allen J S, May D J, Ferrara K W. Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med. Biol., 2002;28(6): 805-816.

共引文献51

同被引文献118

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部