期刊文献+

基于改进活动轮廓模型的数字虚拟人图像分割算法

Segmentation for Virtual Human Images Based on Improved Active Contours Model
下载PDF
导出
摘要 对组织器官的分割和提取是医学图像三维重建及可视化的基础工作。根据数字虚拟人图像的特点,提出了一种基于改进活动轮廓模型的数字虚拟人图像分割算法,推导出了基于改进活动轮廓模型方程的解析表达式,并采用梯度向量流场对该算法进行了改进。该算法克服了传统活动轮廓模型不能处理深度凹陷区域的问题。实验结果表明,该算法具有对"U"形区域计算精确、抗干扰性强、可得到很好的分割结果。
出处 《计算机系统应用》 2009年第12期62-65,共4页 Computer Systems & Applications
  • 相关文献

参考文献12

  • 1Pommert A, Hohne KH, Pflesser B, et al. Creating a high resolution spatial symbolic model of the inner organs based on the visible human. Medical Image Analysis, 2001,(3):221 - 228.
  • 2Schiemann T, Tiede U, Hohne KH. Segmentation of the visible human for high quality volume-based visualizetion. Medical Image Analysis, 1997,(4):263 - 270.
  • 3Dellepiane S, et al.Extraction of intensity connectedness for image processing. Patern Recogn Let., 1995, (16):313 - 324.
  • 4Dellepiane S, Fontana F, Verrrazza G L.Nonlinear image labeling for multivalued segmentation. IEEE Trans. on Image Processing, 1996,(5 ):429 - 446.
  • 5Udupa JK, Samarasekera S. Fuzzy connectedness and object definition:Theory, algorithms, and applications in image segmentation. Graph Models Image Processing, 1996,(58):246 - 261.
  • 6Udupa JK, Samamsekera S.Fuzzy connectedness and object definition. Proc. of SPIE Medical Imaging, 1995, (1):2- 11.
  • 7Rosenfeld A. Fuzzy digital topology. Inform Contr. 1979,40(3):76 - 87.
  • 8Rosenfeld A. The fuzzy geometry of image subsets. Patem Recogn Let., 1991,(2):311 - 317.
  • 9Jones TN, Metaxas DN. Automated 3D segmentation using deformable models and fuzzy afinity. Duncan and G. Gindi, ed, Lecture Notes in Computer- Science, 1997,12(97):113- 126.
  • 10Jones TN, Metaxas DN. Segmentation using deformable models with affinity-based localization. Philadephia, USA:University of Pennsylvania Press, 1997.115- 118.

二级参考文献11

  • 1屈颖歌,周涛,王平安,夏德深.基于支持向量机的核磁共振左心室图像自动检测与分割[J].武汉大学学报(理学版),2003,49(6):769-774. 被引量:5
  • 2Andreas Pommert,Karl Heinz Hohne,et al.Creating a High-resolution Spatial/Symbolic Model of the Inner Organs Based on the Visible Human[J].Medical Image Analysis,2001,5:221-228.
  • 3Thomas Schiemann,Ulf Tiede,Karl Heinz Hohne.Segmentation of the Visible Human for High-quality Volume-based Visualization[J].Medical Image Analysis,1997,1(4):263-270
  • 4Fang XU,Xin LI,Qin YAN.Aerial Images Segmentation Based on SVM[C].Proceedings of the 2nd International Conference on Machine Learning and Sybernetics,Xi'an,2003.2207-2210.
  • 5Constantine Kotropoulos,Ioannis Pitas.Segmentation of Ultrasonic Images Using Support Vector Machines[J].Pattern Recognition,2003,24:715-727.
  • 6S Sathiya Keerthi,Chih-Jen Lin.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J].Neural Computation,2003,15:1667-1689.
  • 7Hsuan-Tien Lin,Chih-Jen Lin.A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/papers/ tanh.pdf,2005-01-12.
  • 8罗惠韬,章毓晋.一个图象分割评价实例及讨论[J].数据采集与处理,1997,12(1):18-22. 被引量:21
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 10钟世镇,原林,黄文华.数字化虚拟人体为临床解剖学开拓研究新领域[J].中国临床解剖学杂志,2002,20(1):3-4. 被引量:72

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部