期刊文献+

爆炸荷载作用下砌体墙碎片分布分析 被引量:3

Fragment distribution analysis of masonry wall under blast load
原文传递
导出
摘要 正确预判结构在不同爆炸事件中可能产生的碎片分布特性,对提高结构的抗爆安全性和减轻爆炸灾害具有重要意义。基于连续损伤力学和裂缝微观发展理论,进行了砌体墙在爆炸荷载作用下产生的碎片尺寸分布分析,得到了概率密度函数;根据空气动力学原理,计算了碎片形成后的抛射轨迹和抛射距离,并进行概率统计分析,得到不同爆炸工况下碎片的概率密度函数。数值分析结果表明:碎片尺寸分布符合广义极限分布规律;碎片抛射距离的分布因比例距离不同而有所不同;比例距离较小时,抛射距离的分布符合广义极限分布;比例距离较大时,抛射距离分布符合指数分布;碎片尺寸的均值和方差均与比例距离呈线性关系;抛射距离的均值和方差与比例距离之间的关系可用波尔兹曼方程表示。 In order to improve the explosive security of structures and reduce the hazards caused by blast events, it is significantly important to predict the fragment distribution in different blast scenarios. In this paper, a numerical method based on theories of continuum damage mechanics and micro-crack development mechanics was employed to statistical analysis for several blast scenarios. The numerical results reflect that fragment size distribution of masonry wall subjected to blast load basically follows the general extreme value distribution. However, the distribution of fragment launch distance depends on sealed distance, which approximately follows the general extreme value distribution as well when the scaled distance is comparatively smaller, whereas it appears to follow the exponential distribution when the sealed distance is larger. It is found that both the mean value and the variance of fragment size are linearly related to sealed distance, but those of fragment launch distance are related to scaled distance by the Boltzman equation.
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2009年第6期54-59,共6页 Journal of Building Structures
基金 国家自然科学基金重点项目(50638030) 国家科技支撑计划重点项目(2006BAJ13B02) 天津市应用基础与前沿技术研究计划重点项目(08JCZDJC19500) 教育部新世纪优秀人才支持计划项目(NCET-06-0229)
关键词 砌体墙 爆炸荷载 有限元分析 碎片分布 抛射距离 masonry wall blast load finite element analysis fragment distribution launch distance
  • 相关文献

参考文献13

  • 1Shockey D A, Curran D R, Seaman L, et al. Fragmentation of rock under dynamic loads [ J ]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11 (8): 303-317.
  • 2Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale [ J ]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980, 17 (3) : 147-157.
  • 3Liu L Q, Katsabanis P D. Development of a continuum damage model for blasting analysis[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1997, 34 (2) :217-231.
  • 4Kun F, Herrmann H J. A study of fragmentation processes using a discrete element method[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 138(1-4):3-18.
  • 5Cusatis G, Bazant Z P, Cedolin L. Confinement-shear lattice CSL model for fracture propagation in concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195 ( 52 ) :7154-7171.
  • 6Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH [ J ]. International Journal for Numerical Methods in Engineering, 2003, 56(10) :1421-1444.
  • 7Persson P. The relationship between strain energy, rock damage, fragmentation, and throw in rock blasting [C ]// Mohanty B editor. Rock fragmentation by blasting. Rotterdam : Balkema, 1996 : 113-120.
  • 8Zhang Y Q, Lu Y, Hao H. Analysis of fragment size and ejection velocity at high strain rate[J]. International Journal of Mechanical Science, 2004, 46 ( 1 ) :27-34.
  • 9Kanninen M F, Popelar C H. Advanced fracture mechanics [ M ]. Oxford: Oxford University Press, 1985.
  • 10Wei X Y, Hao H. Numerical derivation of homogenized dynamic masonry material properties with strain rate effect[J]. International Journal of Impact Engineering, 2009, 36 ( 3 ) :522-536.

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部