期刊文献+

基于相交划分的动态网格聚类算法 被引量:3

Dynamic grids clustering algorithm based on overlapping partition
下载PDF
导出
摘要 为了解决相交网格划分技术中聚类结果对数据输入顺序的依赖性和聚类结果精度不高的问题,提出了一种基于相交划分的动态网格聚类算法(DGBO)。该算法利用相交网格划分技术和移动网格技术来解决上述问题,通过连接相交的高密度网格单元形成聚类,只需一个参数,运行速度快。实验表明,DGBO算法能够快速有效地对任意形状、大小的数据集进行聚类,并能很好地识别出孤立点和噪声。 In order to solve the problems that data input reliance and the clustering result was not efficient in overlapping grids partition technique,this paper proposed a dynamic grids clustering algorithm based on overlapping partition(DGBO).In DGBO,used overlapping grids partition technique and shifting grids technique for solving above problems.With the help of a density threshold,merge overlapping dense grids to form clusters.As the experimental results show that DGBO algorithm can discover clusters in noisy datasets containing clusters of arbitrary shapes and sizes effectively and efficiently.
出处 《计算机应用研究》 CSCD 北大核心 2009年第12期4457-4459,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60673087) 郑州大学骨干教师基金资助项目
关键词 聚类 算法 相交划分 移动网格 动态网格 clusters algorithm overlapping partition shifting grids dynamic grids
  • 相关文献

参考文献8

  • 1AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining applications [C]//Proc of ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 1998:94-105.
  • 2WANG Wei, YANG Jiong, MUNTZ R R. STING: a statistical information grid approach to spatial data mining [ C ]//Proc of the 23 rd International Conference on Very Large Data Bases. San Francisco, CA : Morgan Kaufmann, 1997 : 186- 195.
  • 3GOIL S, NAGESH H, CHOUDHARY A. Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report CPDC-TR-9906-010 [ R]. [ S. l. ] : Northwestem University,1999.
  • 4PILEVAR A H, SUKUMAR M. GCHL: a grid-clustering algorithm for high-dimensional very large spatial data bases [ J ]. Pattern Recognition Letters, 2005, 26(7):999-1010.
  • 5QIU Bao-zhi, LI Xiang-li, SHEN Jun-yi. Grid-based clustering algorithm based on intersecting partition and density estimation [ C ]//Proc of PAKDD. Berlin : Springer, 2007:365- 377.
  • 6邱保志,陈本华.基于移动技术的动态网格聚类算法[J].计算机研究与发展,2007,44(z2):75-78. 被引量:2
  • 7HSU C M, CHEN M S. Subspace clustering of high dimensional spatial data with noises [ C ]//Proc of PAKDD. Berlin : Springer, 2004:31- 40.
  • 8KARYPIS G, HAN E H, KUMAR V. Chameleon: a hierarchical clustering algorithm using dynamic modeling[J]. IEEE Computer, 1999,32 (8) :68- 75.

二级参考文献7

  • 1[1]Rakesh Agrawal,Johannes Gehrke,Dimitrios Gunopulos,et al.Automatic subspace clustering of high dimensional data for data mining applications.ACM SIGMOD Int'lConf on Management of Data,Seattle,Washington,1998
  • 2[2]W Wang,J Yang,R Muntz.STING:A statistical information grid approach to spatial data mining.In:Proc of the 23rd Int'lConf on Very Large Data Bases.San Francisco:Morgan Kaufmann,1997.186-195
  • 3[3]S Goil,H Nagesh,A Choudhary.Mafia:Efficient and scalable subspace clustering for very large data sets.Northwestern University,Tech Rep:CPDC-TR-9906-010,1999
  • 4[4]A H Pilevar,M Sukumar.GCHL:A grid-clustering algorithm for high-dimensional very large spatial data bases.Pattern Recognition Letters,2005,26(6):999-1010
  • 5[5]Baozhi Qiu,Chang Zhang,Junyi Shen.Clustering based on overlapping grid.Journal of Computational Information System,2005,1(4):811-817
  • 6[6]Chih-Ming Hsu,Ming-Syan chen.Subspace clustering of high dimensional spatial data with noise.In:Proc of PAKDD2004,LNAI 3056.Berlin:Springer,2004.31-40
  • 7[7]G Karypis,E-H Han,Kumar.Chameleon:A hierarchical clustering algorithm using dynamic modeling.Computer,1999,32(8):68-75

共引文献1

同被引文献37

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部