期刊文献+

基于决策树模型的P2P流量分类方法 被引量:4

Method for P2P traffic classification based on decision-tree model
下载PDF
导出
摘要 P2P流量逐渐成为互联网流量的重要组成部分,精确分类P2P流量对于有效管理网络和合理利用网络资源都具有重要意义。近年来,利用机器学习方法处理P2P流量分类问题已成为流量识别领域的一个新兴研究方向。利用决策树中的C4.5算法和P2P流量的特征属性来构建决策树模型,进而完成P2P流量分类问题。实验结果表明,基于决策树模型的方法能有效避免P2P网络流分布变化所带来的不稳定性;与SVM(support vectormachine,支持向量机)、NBK(na ve Bayes using kernel density estimation,改进的朴素贝叶斯)方法相比,其平均分类准确率能提高至少3.83个百分点。 P2P traffic has become one of the most significant portions of the network traffic. Accurate identification of P2P traffic makes great sense for efficient network management and reasonable utility of network resources. In recent years, P2P traffic classification using machine learning has been a new direction in traffic identification. This paper proposed a new method based on decision-tree model, using CA. 5 and P2P traffic characteristic. The experiments show this method can effectively avoid the instability of P2P traffic distribution change. Compared with SVM and NBK method, the average of classified precision can increase at least 3.83 percentage points.
出处 《计算机应用研究》 CSCD 北大核心 2009年第12期4690-4693,共4页 Application Research of Computers
关键词 对等网 流量特征 决策树 流量分类 C4.5 P2P traffic characteristic decision-tree traffic classification C4.5
  • 相关文献

参考文献12

  • 1MADHUKARA, WILLIAMSON C. A longitudinal study of P2P traffic classification [ C ]//Proc of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. Los Alamitos, CA : IEEE Computer Society, 2006 : 179-188.
  • 2SEN S, SPATSCHECK O, WANG D M. Accurate, scalable in-network identification of P2P traffic using application signatures [ C ]// Proc of the 13th International Conference on World Wide Web. New York: ACM Press, 2004:512-521.
  • 3WANG R, LIU Yang, YANG Y X, et al. Solving the app-level classification problem of P2P traffic via optimized support vector machines [ C ]//Proc of the 6th International Conference on intelligent Systems Design and Applications. Los Alamitos, CA: IEEE Computer Society, 2006:534-539.
  • 4OHZAHATA S, HAGIWARA Y, TERADA M, et al. A traffic identification method and evaluations for a pure P2P application [ C ]//Proc of 2005 Passive and Active Measurement. Berlin: Springer-Verlag , 2005:55-68.
  • 5KANG H J, KIM M S, HONG J W. Streaming media and multimedia conferencing traffic analysis using payload examination [ J ]. ETRI Journal,2004,26(3) :203-217.
  • 6ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning [ C ]// Proc of the 30th IEEE Conference on Local Computer Networks Anniversary. 2005:250-257.
  • 7MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques [ C ]//Proc of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York: ACM Press,2005:50-60.
  • 8AULD T, MOORE A W, GULL S F. Bayesian neural networks for Internet traffic classification[ J]. IEEE Trans on Neural Network, 2007,18(1) : 223-239.
  • 9邓河,阳爱民,刘永定.一种基于SVM的P2P网络流量分类方法[J].计算机工程与应用,2008,44(14):122-126. 被引量:17
  • 10QUINLAN J R. Induction of decision trees [ J]. Machine Learning, 1986,1 (1) :81-106.

二级参考文献13

  • 1王振华,王攀,张顺颐.基于综合统计特征的Skype流量分析与识别[J].南京邮电大学学报(自然科学版),2006,26(1):1-7. 被引量:14
  • 2Mitchell T M. Machine learning [M]. [S.l.] : McGraw-Hill Education, 1997.
  • 3Mitchell T M. Does machine learning really work? [ J]. AI Magazine, 1997,18(3) :11-20.
  • 4Frank J. Machine learning and intrusion detection:current and future directions [ C ]//Proceedings of the National 17th Computer Security Conference, 1994.
  • 5Dunnigan T, Ostrouchov G. Flow characterization for intrusion detection[ R/OL]. ( 2001 - 11 ). Oak Ridge National Laboratory. http:// www. csm. oml.gov/~ost/id/tm. ps.
  • 6Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification [ C ]//ACM SIGCOMM Internet Measurement Workshop 2004 ,Taormina, Sicily, Italy ,2004.
  • 7McGregor A, Hall M, Lorier P, et al. Flow clustering using mathine learning techniques [ C]//Passive & Active Measurement Workshop 2004 ( PAM 2004), France, 19-20 April 2004.
  • 8Soule A,Salamatian K,Taft N,et al. Flow classification by histograms or how to go on safari in the intcrnet [C]//ACM Sigmctrics, New York, USA, June 2004.
  • 9Zander S, Nguyen T, Armitage G. Self-learning IP traffic elassification based on statistical flow characteristics [ C ]//Passive & Active Measurement Workshop(PAM) 2005, Boston, USA, March/April 2005.
  • 10Zuev D, Moore A. Traffic classification using a statistical approach [C]// Passive & Active Measurement Workshop, Boston, USA, March/April 2005.

共引文献16

同被引文献29

  • 1张云飞,雷连虹,陈常嘉.Internet中Peer-to-Peer应用流量测量与分析[J].铁道学报,2004,26(5):55-60. 被引量:7
  • 2张海英,浦磊,潘永湘.一种自适应快速关联规则挖掘算法[J].计算机工程与应用,2005,41(28):160-162. 被引量:1
  • 3宫婧,孙知信,顾强.基于行为特征描述的P2P流识别方法的研究[J].小型微型计算机系统,2007,28(1):48-53. 被引量:5
  • 4OHZAHATA S,HAGIWARA Y,TERADA M,et al.A traffic iden-tification method and evaluations for a pure P2P application [ C ]//Proceedings of 2005 Passive and Active Network Measurement(PAM' 05).Berlin:Springer-Verlag,2005:55-68.
  • 5NGUYEN T,ARMITAGE G.A survey of techniques for internet traffic classification using machine learning [ J ].Communications Surveys & Tutorials,IEEE,2008,10(4):56-76.
  • 6KARAGIANNIS T,PAPAGIANNAKI K,FALOUTS M.BLINC:mul-tilevel traffic classification in the dark[ C]//ACM SIGCOMM Com-puter Communication Review.New York:ACM,2005:229-240.
  • 7KIM H,CLAFFY K C,FOMENKOV M,et al.Internet traffic clas-sification demystified:myths,caveats,and the best practices [ C ]//Proceedings of the 2008 ACM CoNEXT Conference.New York:ACM,2008:121-132.
  • 8GRINGGOLI F,SALGARELLI L,DUSI M,et al.Gt:picking up the truth from the ground for internet traffic[ J].ACM SIGCOMM Computer Communication Review,2009,39(5):12-18.
  • 9Yang A M, Jiang S Y,Deng H. A P2P networktraffic classification method using SVM [C]//Proc. of the9th Ind Conf, for Young Computer Sci-entists. [S. 1. ] : IEEE Computer Society, 2008 : 398-403.
  • 10Este A, Gringoli F, Salgarelli L. On the stability ofthe information carried by traffic flow features atthe packet level [J]. ACM SIGCOMM ComputerCommunication Review,2009,39(3) : 13-18.

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部