期刊文献+

基于视觉注意的医学图像感兴趣区域提取 被引量:3

Extracting regions of interest in medical images based on visual attention mechanism
下载PDF
导出
摘要 提出一种基于视觉注意机制的医学图像感兴趣区域提取方法。受生物学启发,该方法模仿人类自下而上的视觉选择性注意过程,通过计算图像中每个像素的全局对比度,构造相应的显著图,并根据显著图,检测出图像中的显著区域。利用多幅医学图像对本方法进行评估,结果表明,该方法能够快速、精确地提取图像中的感兴趣区域,在提取结果和运算速度上均取得了令人满意的效果。 This paper proposed a new approach for extracting regions of interest in medical images based on visual attention mechanism. Motivated biologically, this approach simulated the bottom-up human visual selective attention mechanism, computed the global contrast of each pixel and constructed the saliency map. According to the saliency map, detected the salient regions in the medical image. This approach had been tested on many medical images. The experiment results show that this approach is efficient both in extraction result and computational speed. Regions of interest in medical images can be extracted rapidly and precisely.
出处 《计算机应用研究》 CSCD 北大核心 2009年第12期4803-4805,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60774041)
关键词 医学图像处理 感兴趣区域 视觉注意 显著区域 显著图 medical image processing regions of interest(ROI) visual attention salient region saliency map
  • 相关文献

参考文献10

  • 1桂长青,宋余庆,陈健美,谢从华.基于环形分割的医学图像检索[J].江苏大学学报(自然科学版),2008,29(2):155-159. 被引量:3
  • 2朱峰,宋余庆,金华,周成兵.改良遗传算法在图像多阈值分割中的应用[J].江苏大学学报(自然科学版),2003,24(6):66-69. 被引量:10
  • 3HIRANO S, TSUMOTO S. Rough representation of a region of interest in medical images [ J ]. International Journal of Approximate Reasoning, 2005,24(4) : 23-34.
  • 4FASQUEL J B, AGNUS V, SOLER L. A hierarchical toplogical knowledge based image segmentation approach optimizing the use of contextual regions of interest: iustration for medical image analysis [ C ]//Proc of ICIP. 2006:777-780.
  • 5罗希平,田捷.一种改进的交互式医学图像序列分割方法[J].电子学报,2003,31(1):29-32. 被引量:21
  • 6张红梅,卞正中,郭佑民,叶敏.感兴趣区域高效提取算法(英文)[J].软件学报,2005,16(1):77-88. 被引量:14
  • 7ITTI L, KOUCH C. Computational modeling of visual attention[ J]. Nature Reviews Neuroscience, 2001,2 ( 3 ) : 194- 230.
  • 8ITTI L, KOUCH C. Feature combination strategies for saliency-based visual attention systems[J]. Joumal of Electronic Imaging, 2001, 10(1) :161-169.
  • 9MAY F, ZHANG H J. Contrast-based image attention analysis by using fuzzy growing[ C ]//Proc of the 11th ACM International Conference on Multimedia. New York: ACM Press,2003:374-381.
  • 10SUN Y R, FISHER R. Object-based visual attention for computer vision[ J ]. Artificial Intelligence, 2003, 146 ( 1 ) : 77-123.

二级参考文献34

  • 1张建东,苏鸿根.基于内容的图像检索关键技术研究[J].计算机工程,2004,30(14):119-121. 被引量:17
  • 2朱峰,宋余庆,金华,周成兵.改良遗传算法在图像多阈值分割中的应用[J].江苏大学学报(自然科学版),2003,24(6):66-69. 被引量:10
  • 3刘金梅,王国宇.一种基于块划分颜色特征的图像检索方法[J].中国海洋大学学报(自然科学版),2005,35(2):330-334. 被引量:2
  • 4朱浩栋,陈瑛,章鲁.医学图像灰度归一化方法研究[J].国际生物医学工程杂志,2006,29(3):148-151. 被引量:9
  • 5Carl-Fredrik Westin Liana M Lorigo et al.Segmentation by Adaptive Geodesic Active Contours[A]..Proceedings of MICCAI′2000[C].USA:MICCAI,2000..
  • 6Paragios N, Deriche R. Geodesic active regions for motion estimation and tracking. In: Proc of the 7th IEEE Int'l Conf. on Computer Vision. Corfu, 1999. 688-674.
  • 7Zhang HM, Bian ZH, Guo YM, Fei BW, Ye M. An efficient multiscale approach to level set evolution. In: Proc of the 25th Silver Anniversary Int'l Conf. of the IEEE Engineering in Medicine and Biology Society. 2003. 694-697.
  • 8Lorigo LM, Faugeras OD, GrimsonWEL, Keriven R, Kikinis R, Nabavi A, Westion CF. Curves: Curve evolution for vessel segmentation. Medical Image Analysis, 2001,5:185-206.
  • 9Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int'l Conf. on Computer Vision. 1987. 321-331.
  • 10Chakraborty A, Staib LH, Duncan JS. Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans on Medical Imaging, 1996,15(6):859-870.

共引文献43

同被引文献15

  • 1朱峰,宋余庆,金华,周成兵.改良遗传算法在图像多阈值分割中的应用[J].江苏大学学报(自然科学版),2003,24(6):66-69. 被引量:10
  • 2桑林琼,邱明国,王莉,张静娜,张晔.基于统计阈值的脑肿瘤MRI图像的分割方法[J].生物医学工程研究,2010,29(4):237-239. 被引量:11
  • 3Chiou Y C. Intelligent segmentation method for real-timedefect inspection system [ J ]. Computers in Industry,2010,61(7):646-658.
  • 4Hui Zhang, Jason E Fritts, Sally A Goldman. Image seg-mentation evaluation : A survey of unsupervised methods[J], Computer Vision and Image Understanding, 2008,110(2):260-280.
  • 5Yasser H Anis, Mark R Holl, Deirdre R Meldrum. Auto-mated selection and placement of single cells using vision-based feedback control [ J] . IEEE Transactions on Auto-mation Science and Engineering, 2010,7(3) :598-606.
  • 6Csaba Szepesvdri. Algorithms for Reinforcement Learning[M]. Morgan & Claypool Publishers, 2009:2-4,56-57.
  • 7Mahsa Chitsaz, Woo Chaw Seng. Medical image segmenta-tion by using reinforcement learning agent[ C]// 2009 In-ternational Conference on Digital Image Processing. 2009 :216-219.
  • 8Sahba F, Tizhoosh H R, Saiama M M A. A reinforcementlearning framework for medical image segmentation [ C ]//International Joint Conference on Neural Networks. 2006:511-517.
  • 9Sahba F,Tizhoosh H R, Saiama M M A. Increasing objectrecognition rate using reinforced segmentation [ C ] //IEEEInternational Conference on Image Processing, 2006.2006;781-784.
  • 10朱亮,赵波,髙阳,等.基于强化学习的图像分割算法研究[J].计算机科学,2007,34(8A) :164-168.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部