期刊文献+

一种改进AdaBoost算法的车牌检测方法 被引量:4

Method for license plate detection based on improved AdaBoost algorithm
下载PDF
导出
摘要 针对传统AdaBoost算法的不足,分析了分类器训练耗时和训练过程中容易出现样本权重扭曲的问题,并提出了解决这一问题的有效方法。新方法主要对特征值和排序结果进行缓存以及对样本权重的更新规则进行适当调整。实验结果表明,使用该方法训练级联车牌检测器能较好地解决传统AdaBoost算法中所出现的权重扭曲及训练时间长的问题,在提高检测率的同时训练时间缩短了50%左右。 Focusing on the disadvantages of classical AdaBoost algorithm, this paper mainly analyzed the issue that the training time for classifiers was time-consuming and in training process the sample weights were easily distorted and a new method was advanced to avoid the problems. The new method was to buffer the computational results of sorted feature values and regulate the updated rules of sample weights appropriately. As a result, using the method to train a cascade license plate, the experimental results show that the new method does not lead to the issue of weight distortion and time consuming like classical AdaBoost often does, and moreover, the training time is shortened to 50 percent with a high detection rate.
出处 《计算机应用研究》 CSCD 北大核心 2009年第12期4827-4829,共3页 Application Research of Computers
关键词 ADABOOST算法 权重扭曲 耗时 级联分类器 车牌检测 AdaBoost weight distortion time consuming cascade classifier license plate detection
  • 相关文献

参考文献10

  • 1WU Qiang, ZHANG Huai-feng, JIA Wen-jing, et al. Carplate detection using cascaded tree-style learner based on hybrid object features [ EB/OL]. (2008-12-08) [ 2009-03-25 ]. http ://portal. acm. org.
  • 2FREUND Y,SCHAPIRE R E. Experiments with a new boosting algorithm [ C]//Proc of the 13th International Conference on Machine Learning. San Francisco : Morgan Kaufmann Publishers, 1996 : 148-156.
  • 3SCHAPIRE R E. A brief introduction to boosting[ C ]//Proc of the 16th International Joint Conference of Artificial Intelligence. San Francisco: Publishers Inc, 1999 : 1401 - 1406.
  • 4VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [ C ]//Proc of IEEE Computer Soc Computer Vision and Pattern Recognition. 2001:511 - 518.
  • 5XIAO Rong, ZHU Long, ZHANG Hong-jiang. Boosting chain learning for object detection[ C ]//Proc of ICCV. 2003:709-715.
  • 6WU J, REGH J M, MULLIN M D. Learning a rare event detection cascade by direct feature selection[ C]//Proc of NIPS. 2004.
  • 7KUTIN S, NIYOGI P. The interaction of stability and weakness in AdaBoost, TR-2001-30[ R]. Chicago: University of Chicago, 2001.
  • 8FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 ( 1 ) : 119-139.
  • 9KIM J H, KWON B G, KIM J Y, et al. Method to improve the performance of the AdaBoost algorithm by combining weak classifiers [ EB/OL]. (2008-12- 08 ) [ 2009- 03- 03 ]. http ://www. ieee. org/ portal/site.
  • 10LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection [ C ]//Proc of International Conference on Image Processing. 2002:900-903.

同被引文献25

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部