期刊文献+

基于圆形网格化的磁共振PROPELLER旋转校正算法

A Circular Gridding-Based Algorithm for Rotation Correction in the MRI Reconstruction of PROPELLER
下载PDF
导出
摘要 PROPELLER数据采集成像技术利用K空间中心重叠采样区域的数据来估计受检查者的运动并加以校正,能较好地消除运动伪影。本文提出了一种基于圆形网格化的PROPELLER旋转校正算法,将中心重叠区域数据网格化到圆形的网格点上,避免了旋转估计时需多次网格化的缺点;并提出有效的相似性测度公式,通过计算测度值估计相应的旋转运动参数,据此对各数据带进行旋转校正。实验表明,与传统旋转校正算法相比,该算法运行速度快,成像质量好。 PROPELLER data acquisition imaging technique can extract inter-strip motion information from data in central overlapped sampling area, and suppress the artifacts caused by patients' rigid motion effectively. This study proposed a cireular-gridding algorithm for rotation correction. It calculated data in central overlapped area onto circular grid points, and thus avoided much gridding computation. Besides, it proposed a new efficient similarity measure formula to calculate the value of measure, estimated the rotation parameters and corrected data strips. Experimental results demonstrated the proposed method was running faster than the conventional algorithm, and improved image quality.
出处 《北京生物医学工程》 2009年第5期477-480,共4页 Beijing Biomedical Engineering
关键词 磁共振成像 PROPELLER成像算法 旋转校正 圆形网格化 相似性测度公式 magnetic resonance imaging PROPELLER method rotation correction circular gridding similarity measure formula
  • 相关文献

参考文献5

  • 1Pipe JG. Motion correction with PROPELLER MRI:application to head motion and free--breathing cardiac imaging [ J ]. Magnetic Resonance Medicine, 1999,42 (5) :963 - 969.
  • 2Claudia O, Michael M. Spiral reconstruction by Regridding to a Large Rectilinear Matrix : A Practical Solution for Routine Systems [ J ]. Journal of Magnetic Resonance Imaging, 1999, 10 (1) : 84 - 92.
  • 3PipeJG, Farthing VG, Forbes KP. Multishot Diffusion-Weighted FSE Using PROPELLER MRI [ J ]. Magnetic Resonance Medicine, 2002,47 ( 1 ) : 42 - 52.
  • 4ArfanakisK,Tamhane AA,Pipe JG, et al. k-Space Undersampling in PROPELLER Imaging [ J ]. Magnetic Resonance Medicine, 2005,53 (3) : 675 - 683.
  • 5钱勇先,高智勇,林家瑞.MRI图像重建网格化算法的研究进展[J].国外医学(生物医学工程分册),2001,24(4):145-148. 被引量:2

二级参考文献10

  • 1Stehling MK,Turner R,Mansfield P.Echo-planar imaging: magnetic resonance imaging in a fraction of a second[].Science.1991
  • 2Rosenfeld D.An optimal and efficient new gridding algorithm using singular value decomposition[].Magnetic Resonance Review.1998
  • 3Hardly CJ,Cline HE,Bottomley PA.Correcting for nonuniform k-space sampling in two dimensional NMR selective excitation[].Journal of Magnetic Resonance.1990
  • 4Krotz D.Paul Lauterbur recalls origins of MRI concept[].Diagnostic Imaging.1999
  • 5Scheffle K,Henning J.Frequency resolved single-shot MR imaging using stochastic k-space trajectories[].Magnetic Resonance Review.1996
  • 6Ogura Y,Sekihara K.A new method for static imaging of a rotating object[].Journal of Magnetic Resonance.1989
  • 7Hoge RD,Kwan KS,Pike GB.Density compensation for spiral MRI[].Magnetic Resonance Review.1997
  • 8Pipe JG.Reconstructing MR images from undersampled data: data-weighting considerations[].Magnetic Resonance Review.2000
  • 9Moriguchi H,Wendt M,Duerk JL.Applying the uniform resampling algorithm to a Lissajous trajectory:fast image reconstruction with optimal gridding[].Magnetic Resonance Review.2000
  • 10Atkinson D,Poter DA,Hill DLG,et al.Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging[].Magnetic Resonance Review.2000

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部