期刊文献+

一种最大压缩误差可控的高光谱图像压缩算法 被引量:3

A Hyperspectral Image Compression Algorithm of Maximum Compression Error Controllable
下载PDF
导出
摘要 提出了一种可以实时控制压缩误差的高光谱图像有损压缩算法。该算法对高光谱图像矩阵进行奇异值分解得到奇异值矩阵和奇异向量矩阵;用部分奇异值及其对应的奇异向量重构图像;根据测量系统精度要求确定量化因子并对重构图像与原始图像间的光谱误差进行量化;采用预测编码和算术编码对用于图像重构的奇异值及其对应奇异向量进行无损压缩;设计了非零值编码算法完成对重构误差的无损压缩。对Luna Lake和Low Alti-tude图像的仿真结果为:最大相对误差分别控制在0.44%和0.33%时,压缩比为41.5:1和24.6:1,信噪比为50.4 dB和47.8 dB。 A novel algorithm for hyperspectral image compression is proposed in order to control compression error in the process of real - time image compression. In the first step, Singular Value Decomposition (SVD) of the original image matrix was computed and the singular values and singular vectors of the matrix were obtained; the image was then reconstructed with a smaller set of singular values and singular vectors. In the second step, the spectrum errors between the regional image and reconstructed image were calculated by subtracting the reconstructed image spectrum from the original image spectrum; the quantification for the spectrum errors could be obtained by dividing the maximum spectrum errors got from the first step with the acceptable error of the test system. Lastly, the singulars values and singular vectors for reconstructing image were compressed by lossless predictive coding and arithmetic coding, the quantified spectrum errors were also compressed by a novel lossless compression algorithm of non-zero element coding designed in this paper. The results of the simulation on the hyperspeetral images of Luna Lake and Low Altitude show that when the maximum relative errors are controlled to be 0.44% and 0.33% respectively, the compression ratios are. 41. 5 : 1 and 24.6 : 1, the SNRs are 50.4 dB and 47.8 dB.
出处 《宇航学报》 EI CAS CSCD 北大核心 2009年第6期2303-2307,共5页 Journal of Astronautics
基金 省部级项目(C2220061046) 北京理工大学校基础科研(20070242005)
关键词 高光谱图像 数据压缩 压缩误差 误差控制 奇异值分解 Hyperspectral image Data compression Compression error Error control Singular value decomposition
  • 相关文献

参考文献8

  • 1Ma Jing, Li Yunsong, Chen Dong. A new compression and error-correction scheme for interference Spectral images in deep space communication[J]. China Communications, 2006: 57- 62.
  • 2Barbara Penna, Tammam Tillo, Enrico Magli and Gabriella Olmo. Progressive 3D coding of hyperspeetral images based Oil JPEG 2000 [ J ]. IEEE Geoscience and Remote Sensing Letters,2006,3(1): 125 - 129.
  • 3Sangwook Lee, Joan Serra Sagrista and Chulhee Lee. Compression of hyperspectral images using significant pixel information of wavelet transforms [ J ]. Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference, 2006:3532 - 3535.
  • 4Shen Qian. Hyperspectral data compression using a fast vector quantization algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing,2004, 42(8) : 1791 - 1798.
  • 5Sunghyun Lim, Kwang Hoon Solm and Chulhee Lee. Principal componero analysis for compression of hyperspectral images [ J ]. Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. IEEE 2001 International, 2001, 1:97 - 99.
  • 6Aldo Lucero, Sergio Cabrera, Edward Vidal Jr, AXberto Aguirre. Evaluating residual coding with JPEG2000 for L - infinity driven hyperspectral image compression [ J]. SPIE Vol. 5889, 588903 - 1 - 588903 - 12.
  • 7Herries G, Selige T, Danaher S. Singular value decomposition in applied remote sensing[J]. Image Processing for Remote Sensing, IEE, 1996:5/1 - 5/6.
  • 8http://aviris. jpl. nasa. gov/html/aviris. freedata. html.

同被引文献34

  • 1Wang J F, Zhang K, Tang S. Spectral and spatial decorrelation of Landsat-TM data for lossless compression [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33 ( 5 ) : 1277 - 1285.
  • 2Qian S E. Hyperspectral data compression using a fast vector quantization algorithm [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 24 ( 8 ) : 1791 - 1798.
  • 3Du Q, Fowler J E. Hyperspectral image compression using JPEG2000 and principal component analysis [ J ]. IEEE Geoseienee and Remote Sensing Letters, 2007, 4 ( 2 ) : 201 - 205.
  • 4Dragotti P L, Poggi G, Ragozini A R P. Compression of multispectral images by three - dimensional SPIHT algorithm [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38 ( 1 ) :416 -428.
  • 5Robinson J, Kecman V. Combining support vector machine learning with the discrete cosine transform in image compression [ J]. IEEE Transactions on Neural Networks, 2003, 14 (4) :950 958.
  • 6Calderbank A R,Daubechies I, Sweldens W, et al. Lossless image compression using integer to integer wavelet transforms [ C ]. Proc IEEE International Conference on Image Processing, Piscat-away, NJ, United States, 1997, 1.
  • 7Zhang L, Zhou W D, Jiao L C. Wavelet support vector machine [J ]. IEEE Transactions on Systems, Man and Cybernetics, 2004, 34(1) :34 -39.
  • 8柴焱,计文平,沈兰荪.一种基于混合整型变换和3D-SPIHT的高光谱图像嵌入式无损压缩方法[J].电子学报,2007,35(9):1770-1773. 被引量:6
  • 9闫敬文,屈小波,陈嘉臻.分组Karhun-Loeve变换/整数小波变换高光谱影像准无损压缩新方法[J].光学学报,2007,27(10):1740-1744. 被引量:7
  • 10Wright R, Lucey P, Crites S, et al. BBM/EM design of thethermal hyperspectral imager: an instrument for remotesensing of earth’s surface, atmosphere and ocean, from amicrosatellite platform[J]. Acta Astronautica, 2013, 87(1):182-192.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部